CH11-AQS-1
AbstractQueuedSynchronizer
AQS 是一个用来构建锁和同步器的框架,使用 AQS 能够简单高效的构造出应用广泛的同步器,比如 ReentrantLock、Semaphore,其他诸如 ReentrantReadWriteLock、SynchronousQueue、FutureTask 等也是基于 AQS 实现的。我们自己也可以基于 AQS 构造满足自己需要的同步器。
核心思想
- 如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。
- 如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制。
- AQS 使用 CLH 队列锁实现了该机制,将暂时获取不到锁的线程加入到队列中。
- AQS 使用一个 int 成员变量表示同步状态,通过内置的 FIFO 队列来完成获取资源线程的排队工作。
- AQS 使用 CAS 对该同步状态执行原子操作以实现值的修改,并使用 volatile 保证该状态的可见性。
CLH(Craig,Landin,and Hagersten) 队列是一个虚拟的双向队列(即不存在队列实例、仅存在结点之间的关联关系)。AQS是将每条请求共享资源的线程封装成一个 CLH 锁队列的一个结点(Node)来实现锁的分配。
状态信息通过 protected 范围的方法执行操作:
private volatile int state;
//返回同步状态的当前值
protected final int getState() {
return state;
}
// 设置同步状态的值
protected final void setState(int newState) {
state = newState;
}
//原子地(CAS操作)将同步状态值设置为给定值update如果当前同步状态的值等于expect(期望值)
protected final boolean compareAndSetState(int expect, int update) {
return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}
资源共享方式
- 独占(Exclusive):只有一个线程能够执行,如 ReentrantLock。又可以分为公平锁和非公平锁:
- 公平锁:按照线程在队列中的排队顺序,先到者先获得锁。
- 非公平锁:当线程要获得锁时,无视队列顺序直接抢锁,谁抢到随获取。
- 共享(Share):多个线程可以同时执行,如 Semaphore、CountDownLatch。
而 ReentrantReadWriteLock 可以看做是对以上两种方式的组合,因为它允许多个线程同时对一个资源执行读,但仅能有一个线程执行写。
不同的自定义同步器争用共享资源的方式不同。自定义同步器在实现时只需要实现共享资源 state 的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败后入队/唤醒出队等),AQS 已经在上层实现了。
AQS 底层使用的模板方法模式
同步器的设计基于模板方法模式,自定义同步器时继承 AQS 并重写指定的方法即可:
- isHeldExclusively:判断线程是否正在独占资源,只有用到 condition 才需要实现。
- tryAcquire(int):独占获取资源,成功失败返回 ture、false。
- tryRelease(int):独占释放资源,成功失败返回 true、false。
- tryAcquireShared(int):共享获取资源,失败为负,为 0 表示成功但没有剩余可用资源,为正表示成且有可用资源。
- tryReleaseShared(int):共享释放资源,成功失败返回 true、false。
相关细节:
- 默认情况下,每个方法都能抛出 UnsupportedException。
- 所有方法的实现必须是内部线程安全的,并且应该简短且不阻塞。
- 其他方法均为 final,所以仅有以上方法可以被其他类使用。
以 ReentrantLock 为例:
- 初始状态 state 为 0,表示未锁定状态。
- A 线程 lock 时,会调用 tryAcquire 独占锁定并将 state+1。
- 此后其他线程再 tryAcquire 时会失败,直到 A 线程 unlock 并将 state=0(释放锁)为止。
- 在 A 线程释放锁之前,A 线程可以重复获取此锁(state 累加),即可重入。
- 获取多次就要释放多次,直至 state 为 0 才表示释放锁。
数据结构
- AQS 底层使用 CLH,将每条请求共享资源的线程封装为 CLH 队列的一个节点。
- 其中同步队列 Sync Queue 为双向链表,包括 head 和 tail 节点,head 节点主要用作后续的调度。
- 其中 Condition Queue 不是必须,是一个单向链表,只有使用 Condition 时,才会使用该队列。
- 并且可能会有多个 Condition Queue。
源码分析
层级结构
AQS 继承抽象类 AbstractOwnableSynchronizer,实现了 Serializable 接口,支持序列化。
public abstract class AbstractOwnableSynchronizer implements java.io.Serializable {
// 版本序列号
private static final long serialVersionUID = 3737899427754241961L;
// 构造方法
protected AbstractOwnableSynchronizer() { }
// 独占模式下的线程
private transient Thread exclusiveOwnerThread;
// 设置独占线程
protected final void setExclusiveOwnerThread(Thread thread) {
exclusiveOwnerThread = thread;
}
// 获取独占线程
protected final Thread getExclusiveOwnerThread() {
return exclusiveOwnerThread;
}
}
- 其中可以“设置独占资源线程”和“获取独占资源线程”,分别为 setExclusiveOwnerThread 与 getExclusiveOwnerThread 方法,这两个方法会被子类调用。
- 其中有两个内部类,Node、ConditionObject。
内部类:Node
static final class Node {
// 模式,分为共享与独占
// 共享模式
static final Node SHARED = new Node();
// 独占模式
static final Node EXCLUSIVE = null;
// 结点状态
// CANCELLED,值为1,表示当前的线程被取消
// SIGNAL,值为-1,表示当前节点的后继节点包含的线程需要运行,也就是unpark
// CONDITION,值为-2,表示当前节点在等待condition,也就是在condition队列中
// PROPAGATE,值为-3,表示当前场景下后续的acquireShared能够得以执行
// 值为0,表示当前节点在sync队列中,等待着获取锁
static final int CANCELLED = 1;
static final int SIGNAL = -1;
static final int CONDITION = -2;
static final int PROPAGATE = -3;
// 结点状态
volatile int waitStatus;
// 前驱结点
volatile Node prev;
// 后继结点
volatile Node next;
// 结点所对应的线程
volatile Thread thread;
// 下一个等待者
Node nextWaiter;
// 结点是否在共享模式下等待
final boolean isShared() {
return nextWaiter == SHARED;
}
// 获取前驱结点,若前驱结点为空,抛出异常
final Node predecessor() throws NullPointerException {
// 保存前驱结点
Node p = prev;
if (p == null) // 前驱结点为空,抛出异常
throw new NullPointerException();
else // 前驱结点不为空,返回
return p;
}
// 无参构造方法
Node() { // Used to establish initial head or SHARED marker
}
// 构造方法
Node(Thread thread, Node mode) { // Used by addWaiter
this.nextWaiter = mode;
this.thread = thread;
}
// 构造方法
Node(Thread thread, int waitStatus) { // Used by Condition
this.waitStatus = waitStatus;
this.thread = thread;
}
}
- 每个被阻塞的线程都会被封装为一个 Node 节点并放入队列。
- 每个节点包含了一个 Thread 类型的引用,并且每个节点都有一个状态,状态如下:
- CANCELLED:1,当前线程被取消。
- SIGNAL:-1,当前节点的后继节点中的线程需要运行,需要进行 unpark 操作。
- CONDITION:-2,当前节点在等待 condition,即 condition queue 中。
- PROPAGATE:-3,当前场景下后续的 acquireSHared 能够得以执行。
- 0:当前节点在 sync queue 中,等待获取锁。
内部类:ConditionObject
// 内部类
public class ConditionObject implements Condition, java.io.Serializable {
// 版本号
private static final long serialVersionUID = 1173984872572414699L;
/** First node of condition queue. */
// condition队列的头结点
private transient Node firstWaiter;
/** Last node of condition queue. */
// condition队列的尾结点
private transient Node lastWaiter;
/**
* Creates a new {@code ConditionObject} instance.
*/
// 构造方法
public ConditionObject() { }
// Internal methods
/**
* Adds a new waiter to wait queue.
* @return its new wait node
*/
// 添加新的waiter到wait队列
private Node addConditionWaiter() {
// 保存尾结点
Node t = lastWaiter;
// If lastWaiter is cancelled, clean out.
if (t != null && t.waitStatus != Node.CONDITION) { // 尾结点不为空,并且尾结点的状态不为CONDITION
// 清除状态为CONDITION的结点
unlinkCancelledWaiters();
// 将最后一个结点重新赋值给t
t = lastWaiter;
}
// 新建一个结点
Node node = new Node(Thread.currentThread(), Node.CONDITION);
if (t == null) // 尾结点为空
// 设置condition队列的头结点
firstWaiter = node;
else // 尾结点不为空
// 设置为节点的nextWaiter域为node结点
t.nextWaiter = node;
// 更新condition队列的尾结点
lastWaiter = node;
return node;
}
/**
* Removes and transfers nodes until hit non-cancelled one or
* null. Split out from signal in part to encourage compilers
* to inline the case of no waiters.
* @param first (non-null) the first node on condition queue
*/
private void doSignal(Node first) {
// 循环
do {
if ( (firstWaiter = first.nextWaiter) == null) // 该节点的nextWaiter为空
// 设置尾结点为空
lastWaiter = null;
// 设置first结点的nextWaiter域
first.nextWaiter = null;
} while (!transferForSignal(first) &&
(first = firstWaiter) != null); // 将结点从condition队列转移到sync队列失败并且condition队列中的头结点不为空,一直循环
}
/**
* Removes and transfers all nodes.
* @param first (non-null) the first node on condition queue
*/
private void doSignalAll(Node first) {
// condition队列的头结点尾结点都设置为空
lastWaiter = firstWaiter = null;
// 循环
do {
// 获取first结点的nextWaiter域结点
Node next = first.nextWaiter;
// 设置first结点的nextWaiter域为空
first.nextWaiter = null;
// 将first结点从condition队列转移到sync队列
transferForSignal(first);
// 重新设置first
first = next;
} while (first != null);
}
/**
* Unlinks cancelled waiter nodes from condition queue.
* Called only while holding lock. This is called when
* cancellation occurred during condition wait, and upon
* insertion of a new waiter when lastWaiter is seen to have
* been cancelled. This method is needed to avoid garbage
* retention in the absence of signals. So even though it may
* require a full traversal, it comes into play only when
* timeouts or cancellations occur in the absence of
* signals. It traverses all nodes rather than stopping at a
* particular target to unlink all pointers to garbage nodes
* without requiring many re-traversals during cancellation
* storms.
*/
// 从condition队列中清除状态为CANCEL的结点
private void unlinkCancelledWaiters() {
// 保存condition队列头结点
Node t = firstWaiter;
Node trail = null;
while (t != null) { // t不为空
// 下一个结点
Node next = t.nextWaiter;
if (t.waitStatus != Node.CONDITION) { // t结点的状态不为CONDTION状态
// 设置t节点的额nextWaiter域为空
t.nextWaiter = null;
if (trail == null) // trail为空
// 重新设置condition队列的头结点
firstWaiter = next;
else // trail不为空
// 设置trail结点的nextWaiter域为next结点
trail.nextWaiter = next;
if (next == null) // next结点为空
// 设置condition队列的尾结点
lastWaiter = trail;
}
else // t结点的状态为CONDTION状态
// 设置trail结点
trail = t;
// 设置t结点
t = next;
}
}
// public methods
/**
* Moves the longest-waiting thread, if one exists, from the
* wait queue for this condition to the wait queue for the
* owning lock.
*
* @throws IllegalMonitorStateException if {@link #isHeldExclusively}
* returns {@code false}
*/
// 唤醒一个等待线程。如果所有的线程都在等待此条件,则选择其中的一个唤醒。在从 await 返回之前,该线程必须重新获取锁。
public final void signal() {
if (!isHeldExclusively()) // 不被当前线程独占,抛出异常
throw new IllegalMonitorStateException();
// 保存condition队列头结点
Node first = firstWaiter;
if (first != null) // 头结点不为空
// 唤醒一个等待线程
doSignal(first);
}
/**
* Moves all threads from the wait queue for this condition to
* the wait queue for the owning lock.
*
* @throws IllegalMonitorStateException if {@link #isHeldExclusively}
* returns {@code false}
*/
// 唤醒所有等待线程。如果所有的线程都在等待此条件,则唤醒所有线程。在从 await 返回之前,每个线程都必须重新获取锁。
public final void signalAll() {
if (!isHeldExclusively()) // 不被当前线程独占,抛出异常
throw new IllegalMonitorStateException();
// 保存condition队列头结点
Node first = firstWaiter;
if (first != null) // 头结点不为空
// 唤醒所有等待线程
doSignalAll(first);
}
/**
* Implements uninterruptible condition wait.
* <ol>
* <li> Save lock state returned by {@link #getState}.
* <li> Invoke {@link #release} with saved state as argument,
* throwing IllegalMonitorStateException if it fails.
* <li> Block until signalled.
* <li> Reacquire by invoking specialized version of
* {@link #acquire} with saved state as argument.
* </ol>
*/
// 等待,当前线程在接到信号之前一直处于等待状态,不响应中断
public final void awaitUninterruptibly() {
// 添加一个结点到等待队列
Node node = addConditionWaiter();
// 获取释放的状态
int savedState = fullyRelease(node);
boolean interrupted = false;
while (!isOnSyncQueue(node)) { //
// 阻塞当前线程
LockSupport.park(this);
if (Thread.interrupted()) // 当前线程被中断
// 设置interrupted状态
interrupted = true;
}
if (acquireQueued(node, savedState) || interrupted) //
selfInterrupt();
}
/*
* For interruptible waits, we need to track whether to throw
* InterruptedException, if interrupted while blocked on
* condition, versus reinterrupt current thread, if
* interrupted while blocked waiting to re-acquire.
*/
/** Mode meaning to reinterrupt on exit from wait */
private static final int REINTERRUPT = 1;
/** Mode meaning to throw InterruptedException on exit from wait */
private static final int THROW_IE = -1;
/**
* Checks for interrupt, returning THROW_IE if interrupted
* before signalled, REINTERRUPT if after signalled, or
* 0 if not interrupted.
*/
private int checkInterruptWhileWaiting(Node node) {
return Thread.interrupted() ?
(transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
0;
}
/**
* Throws InterruptedException, reinterrupts current thread, or
* does nothing, depending on mode.
*/
private void reportInterruptAfterWait(int interruptMode)
throws InterruptedException {
if (interruptMode == THROW_IE)
throw new InterruptedException();
else if (interruptMode == REINTERRUPT)
selfInterrupt();
}
/**
* Implements interruptible condition wait.
* <ol>
* <li> If current thread is interrupted, throw InterruptedException.
* <li> Save lock state returned by {@link #getState}.
* <li> Invoke {@link #release} with saved state as argument,
* throwing IllegalMonitorStateException if it fails.
* <li> Block until signalled or interrupted.
* <li> Reacquire by invoking specialized version of
* {@link #acquire} with saved state as argument.
* <li> If interrupted while blocked in step 4, throw InterruptedException.
* </ol>
*/
// // 等待,当前线程在接到信号或被中断之前一直处于等待状态
public final void await() throws InterruptedException {
if (Thread.interrupted()) // 当前线程被中断,抛出异常
throw new InterruptedException();
// 在wait队列上添加一个结点
Node node = addConditionWaiter();
//
int savedState = fullyRelease(node);
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
// 阻塞当前线程
LockSupport.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0) // 检查结点等待时的中断类型
break;
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}
/**
* Implements timed condition wait.
* <ol>
* <li> If current thread is interrupted, throw InterruptedException.
* <li> Save lock state returned by {@link #getState}.
* <li> Invoke {@link #release} with saved state as argument,
* throwing IllegalMonitorStateException if it fails.
* <li> Block until signalled, interrupted, or timed out.
* <li> Reacquire by invoking specialized version of
* {@link #acquire} with saved state as argument.
* <li> If interrupted while blocked in step 4, throw InterruptedException.
* </ol>
*/
// 等待,当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态
public final long awaitNanos(long nanosTimeout)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
final long deadline = System.nanoTime() + nanosTimeout;
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
if (nanosTimeout <= 0L) {
transferAfterCancelledWait(node);
break;
}
if (nanosTimeout >= spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
nanosTimeout = deadline - System.nanoTime();
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return deadline - System.nanoTime();
}
/**
* Implements absolute timed condition wait.
* <ol>
* <li> If current thread is interrupted, throw InterruptedException.
* <li> Save lock state returned by {@link #getState}.
* <li> Invoke {@link #release} with saved state as argument,
* throwing IllegalMonitorStateException if it fails.
* <li> Block until signalled, interrupted, or timed out.
* <li> Reacquire by invoking specialized version of
* {@link #acquire} with saved state as argument.
* <li> If interrupted while blocked in step 4, throw InterruptedException.
* <li> If timed out while blocked in step 4, return false, else true.
* </ol>
*/
// 等待,当前线程在接到信号、被中断或到达指定最后期限之前一直处于等待状态
public final boolean awaitUntil(Date deadline)
throws InterruptedException {
long abstime = deadline.getTime();
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
boolean timedout = false;
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
if (System.currentTimeMillis() > abstime) {
timedout = transferAfterCancelledWait(node);
break;
}
LockSupport.parkUntil(this, abstime);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return !timedout;
}
/**
* Implements timed condition wait.
* <ol>
* <li> If current thread is interrupted, throw InterruptedException.
* <li> Save lock state returned by {@link #getState}.
* <li> Invoke {@link #release} with saved state as argument,
* throwing IllegalMonitorStateException if it fails.
* <li> Block until signalled, interrupted, or timed out.
* <li> Reacquire by invoking specialized version of
* {@link #acquire} with saved state as argument.
* <li> If interrupted while blocked in step 4, throw InterruptedException.
* <li> If timed out while blocked in step 4, return false, else true.
* </ol>
*/
// 等待,当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。此方法在行为上等效于: awaitNanos(unit.toNanos(time)) > 0
public final boolean await(long time, TimeUnit unit)
throws InterruptedException {
long nanosTimeout = unit.toNanos(time);
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
final long deadline = System.nanoTime() + nanosTimeout;
boolean timedout = false;
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
if (nanosTimeout <= 0L) {
timedout = transferAfterCancelledWait(node);
break;
}
if (nanosTimeout >= spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
nanosTimeout = deadline - System.nanoTime();
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null)
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
return !timedout;
}
// support for instrumentation
/**
* Returns true if this condition was created by the given
* synchronization object.
*
* @return {@code true} if owned
*/
final boolean isOwnedBy(AbstractQueuedSynchronizer sync) {
return sync == AbstractQueuedSynchronizer.this;
}
/**
* Queries whether any threads are waiting on this condition.
* Implements {@link AbstractQueuedSynchronizer#hasWaiters(ConditionObject)}.
*
* @return {@code true} if there are any waiting threads
* @throws IllegalMonitorStateException if {@link #isHeldExclusively}
* returns {@code false}
*/
// 查询是否有正在等待此条件的任何线程
protected final boolean hasWaiters() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION)
return true;
}
return false;
}
/**
* Returns an estimate of the number of threads waiting on
* this condition.
* Implements {@link AbstractQueuedSynchronizer#getWaitQueueLength(ConditionObject)}.
*
* @return the estimated number of waiting threads
* @throws IllegalMonitorStateException if {@link #isHeldExclusively}
* returns {@code false}
*/
// 返回正在等待此条件的线程数估计值
protected final int getWaitQueueLength() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
int n = 0;
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION)
++n;
}
return n;
}
/**
* Returns a collection containing those threads that may be
* waiting on this Condition.
* Implements {@link AbstractQueuedSynchronizer#getWaitingThreads(ConditionObject)}.
*
* @return the collection of threads
* @throws IllegalMonitorStateException if {@link #isHeldExclusively}
* returns {@code false}
*/
// 返回包含那些可能正在等待此条件的线程集合
protected final Collection<Thread> getWaitingThreads() {
if (!isHeldExclusively())
throw new IllegalMonitorStateException();
ArrayList<Thread> list = new ArrayList<Thread>();
for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
if (w.waitStatus == Node.CONDITION) {
Thread t = w.thread;
if (t != null)
list.add(t);
}
}
return list;
}
}
该类实现了 Condition 接口,Condition 接口定义了条件操作的规范:
public interface Condition {
// 等待,当前线程在接到信号或被中断之前一直处于等待状态
void await() throws InterruptedException;
// 等待,当前线程在接到信号之前一直处于等待状态,不响应中断
void awaitUninterruptibly();
//等待,当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态
long awaitNanos(long nanosTimeout) throws InterruptedException;
// 等待,当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。此方法在行为上等效于: awaitNanos(unit.toNanos(time)) > 0
boolean await(long time, TimeUnit unit) throws InterruptedException;
// 等待,当前线程在接到信号、被中断或到达指定最后期限之前一直处于等待状态
boolean awaitUntil(Date deadline) throws InterruptedException;
// 唤醒一个等待线程。如果所有的线程都在等待此条件,则选择其中的一个唤醒。在从 await 返回之前,该线程必须重新获取锁。
void signal();
// 唤醒所有等待线程。如果所有的线程都在等待此条件,则唤醒所有线程。在从 await 返回之前,每个线程都必须重新获取锁。
void signalAll();
}
类的属性
属性中包含了头结点 head,为节点 tail,状态 state,自旋时间 spinForTimeoutThreshold,以及 AQS 抽象的属性在内存中的便宜地址,通过该便宜地址,可以获取和设置属性的值,同时该包括一个静态初始化块,用于加载内存偏移地址:
public abstract class AbstractQueuedSynchronizer extends AbstractOwnableSynchronizer
implements java.io.Serializable {
// 版本号
private static final long serialVersionUID = 7373984972572414691L;
// 头结点
private transient volatile Node head;
// 尾结点
private transient volatile Node tail;
// 状态
private volatile int state;
// 自旋时间
static final long spinForTimeoutThreshold = 1000L;
// Unsafe类实例
private static final Unsafe unsafe = Unsafe.getUnsafe();
// state内存偏移地址
private static final long stateOffset;
// head内存偏移地址
private static final long headOffset;
// state内存偏移地址
private static final long tailOffset;
// tail内存偏移地址
private static final long waitStatusOffset;
// next内存偏移地址
private static final long nextOffset;
// 静态初始化块
static {
try {
stateOffset = unsafe.objectFieldOffset
(AbstractQueuedSynchronizer.class.getDeclaredField("state"));
headOffset = unsafe.objectFieldOffset
(AbstractQueuedSynchronizer.class.getDeclaredField("head"));
tailOffset = unsafe.objectFieldOffset
(AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
waitStatusOffset = unsafe.objectFieldOffset
(Node.class.getDeclaredField("waitStatus"));
nextOffset = unsafe.objectFieldOffset
(Node.class.getDeclaredField("next"));
} catch (Exception ex) { throw new Error(ex); }
}
}
类的构造方法
该类构造方法为抽象构造方法,仅供子类调用。
类的核心方法:acquire
该方法以独占模式获取(资源),忽略中断,即线程在aquire过程中,中断此线程是无效的。源码如下:
public final void acquire(int arg) {
if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
线程在调用 tryAcquire 时的流程如下:
- 首先调用 tryAcquire 方法,线程会尝试在独占模式下获取对象状态。
- 此方法会查询是否允许它在独占模式下获取对象状态,如果允许则获取。
- 在 AQS 源码中会默认抛出一个异常,即需要子类重写该方法以实现需要的逻辑。
- 若 tryAcquire 失败,则调用 addWaiter 方法,addWaiter 方法完成的功能是将调用此方法的线程封装成为一个节点并放入 Sync Queue。
- 调用 acquireQueued 方法,此方法完成的功能是 Sync Queue 中的节点不断尝试获取资源,成功失败返回 true、false。
- 调用 tryAcquire 默认实现是抛出异常,因此需要继承者实现。
首先是 addWaiter 方法:
// 添加等待者
private Node addWaiter(Node mode) {
// 新生成一个结点,默认为独占模式
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
// 保存尾结点
Node pred = tail;
if (pred != null) { // 尾结点不为空,即已经被初始化
// 将node结点的prev域连接到尾结点
node.prev = pred;
if (compareAndSetTail(pred, node)) { // 比较pred是否为尾结点,是则将尾结点设置为node
// 设置尾结点的next域为node
pred.next = node;
return node; // 返回新生成的结点
}
}
enq(node); // 尾结点为空(即还没有被初始化过),或者是compareAndSetTail操作失败,则入队列
return node;
}
addWaiter 方法使用快速添加的方式往 sync queue 尾部添加结点,如果 sync queue 队列还没有初始化,则会使用 enq 插入队列中,enq 方法源码如下:
private Node enq(final Node node) {
for (;;) { // 无限循环,确保结点能够成功入队列
// 保存尾结点
Node t = tail;
if (t == null) { // 尾结点为空,即还没被初始化
if (compareAndSetHead(new Node())) // 头结点为空,并设置头结点为新生成的结点
tail = head; // 头结点与尾结点都指向同一个新生结点
} else { // 尾结点不为空,即已经被初始化过
// 将node结点的prev域连接到尾结点
node.prev = t;
if (compareAndSetTail(t, node)) { // 比较结点t是否为尾结点,若是则将尾结点设置为node
// 设置尾结点的next域为node
t.next = node;
return t; // 返回尾结点
}
}
}
}
enq 方法会使用无限循环来确保节点的成功插入。
acquireQueue方法:
// sync队列中的结点在独占且忽略中断的模式下获取(资源)
final boolean acquireQueued(final Node node, int arg) {
// 标志
boolean failed = true;
try {
// 中断标志
boolean interrupted = false;
for (;;) { // 无限循环
// 获取node节点的前驱结点
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) { // 前驱为头结点并且成功获得锁
setHead(node); // 设置头结点
p.next = null; // help GC
failed = false; // 设置标志
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
首先获取当前节点的前驱节点,如果前驱节点是头结点并且能够获取(资源),代表该当前节点能够占有锁,设置头结点为当前节点,返回。否则,调用shouldParkAfterFailedAcquire和parkAndCheckInterrupt方法,首先,我们看shouldParkAfterFailedAcquire方法,代码如下:
// 当获取(资源)失败后,检查并且更新结点状态
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
// 获取前驱结点的状态
int ws = pred.waitStatus;
if (ws == Node.SIGNAL) // 状态为SIGNAL,为-1
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
// 可以进行park操作
return true;
if (ws > 0) { // 表示状态为CANCELLED,为1
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0); // 找到pred结点前面最近的一个状态不为CANCELLED的结点
// 赋值pred结点的next域
pred.next = node;
} else { // 为PROPAGATE -3 或者是0 表示无状态,(为CONDITION -2时,表示此节点在condition queue中)
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
// 比较并设置前驱结点的状态为SIGNAL
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
// 不能进行park操作
return false;
}
只有当该节点的前驱结点的状态为SIGNAL时,才可以对该结点所封装的线程进行park操作。否则,将不能进行park操作。再看parkAndCheckInterrupt方法,源码如下:
// 进行park操作并且返回该线程是否被中断
private final boolean parkAndCheckInterrupt() {
// 在许可可用之前禁用当前线程,并且设置了blocker
LockSupport.park(this);
return Thread.interrupted(); // 当前线程是否已被中断,并清除中断标记位
}
parkAndCheckInterrupt方法里的逻辑是首先执行park操作,即禁用当前线程,然后返回该线程是否已经被中断。再看final块中的cancelAcquire方法,其源码如下:
// 取消继续获取(资源)
private void cancelAcquire(Node node) {
// Ignore if node doesn't exist
// node为空,返回
if (node == null)
return;
// 设置node结点的thread为空
node.thread = null;
// Skip cancelled predecessors
// 保存node的前驱结点
Node pred = node.prev;
while (pred.waitStatus > 0) // 找到node前驱结点中第一个状态小于0的结点,即不为CANCELLED状态的结点
node.prev = pred = pred.prev;
// predNext is the apparent node to unsplice. CASes below will
// fail if not, in which case, we lost race vs another cancel
// or signal, so no further action is necessary.
// 获取pred结点的下一个结点
Node predNext = pred.next;
// Can use unconditional write instead of CAS here.
// After this atomic step, other Nodes can skip past us.
// Before, we are free of interference from other threads.
// 设置node结点的状态为CANCELLED
node.waitStatus = Node.CANCELLED;
// If we are the tail, remove ourselves.
if (node == tail && compareAndSetTail(node, pred)) { // node结点为尾结点,则设置尾结点为pred结点
// 比较并设置pred结点的next节点为null
compareAndSetNext(pred, predNext, null);
} else { // node结点不为尾结点,或者比较设置不成功
// If successor needs signal, try to set pred's next-link
// so it will get one. Otherwise wake it up to propagate.
int ws;
if (pred != head &&
((ws = pred.waitStatus) == Node.SIGNAL ||
(ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
pred.thread != null) { // (pred结点不为头结点,并且pred结点的状态为SIGNAL)或者
// pred结点状态小于等于0,并且比较并设置等待状态为SIGNAL成功,并且pred结点所封装的线程不为空
// 保存结点的后继
Node next = node.next;
if (next != null && next.waitStatus <= 0) // 后继不为空并且后继的状态小于等于0
compareAndSetNext(pred, predNext, next); // 比较并设置pred.next = next;
} else {
unparkSuccessor(node); // 释放node的前一个结点
}
node.next = node; // help GC
}
}
该方法完成的功能就是取消当前线程对资源的获取,即设置该结点的状态为CANCELLED,接着我们再看unparkSuccessor方法,源码如下:
// 释放后继结点
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
// 获取node结点的等待状态
int ws = node.waitStatus;
if (ws < 0) // 状态值小于0,为SIGNAL -1 或 CONDITION -2 或 PROPAGATE -3
// 比较并且设置结点等待状态,设置为0
compareAndSetWaitStatus(node, ws, 0);
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
// 获取node节点的下一个结点
Node s = node.next;
if (s == null || s.waitStatus > 0) { // 下一个结点为空或者下一个节点的等待状态大于0,即为CANCELLED
// s赋值为空
s = null;
// 从尾结点开始从后往前开始遍历
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0) // 找到等待状态小于等于0的结点,找到最前的状态小于等于0的结点
// 保存结点
s = t;
}
if (s != null) // 该结点不为为空,释放许可
LockSupport.unpark(s.thread);
}
该方法的作用就是为了释放node节点的后继结点。
对于cancelAcquire与unparkSuccessor方法,如下示意图可以清晰的表示:
其中node为参数,在执行完cancelAcquire方法后的效果就是unpark了s结点所包含的t4线程。
现在,再来看acquireQueued方法的整个的逻辑。逻辑如下:
判断结点的前驱是否为head并且是否成功获取(资源)。
若步骤1均满足,则设置结点为head,之后会判断是否finally模块,然后返回。
若步骤2不满足,则判断是否需要park当前线程,是否需要park当前线程的逻辑是判断结点的前驱结点的状态是否为SIGNAL,若是,则park当前结点,否则,不进行park操作。
若park了当前线程,之后某个线程对本线程unpark后,并且本线程也获得机会运行。那么,将会继续进行步骤 1 的判断。
类的核心方法:release
以独占模式释放资源:
public final boolean release(int arg) {
if (tryRelease(arg)) { // 释放成功
// 保存头结点
Node h = head;
if (h != null && h.waitStatus != 0) // 头结点不为空并且头结点状态不为0
unparkSuccessor(h); //释放头结点的后继结点
return true;
}
return false;
}
其中,tryRelease的默认实现是抛出异常,需要具体的子类实现,如果tryRelease成功,那么如果头结点不为空并且头结点的状态不为0,则释放头结点的后继结点,unparkSuccessor方法已经分析过,不再累赘。
对于其他方法我们也可以分析,与前面分析的方法大同小异,所以,不再累赘。
参考资料
Feedback
Was this page helpful?
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.