CH09-底层支撑
CAS
现在安全的实现方法:
- 互斥同步:synchronized、ReentrantLock
- 非阻塞同步:CAS、Atomic-
- 无同步方案:栈封闭、TreadLocal、可重入代码
什么是 CAS
CAS 的全称为 Compare-And-Swap,直译就是对比交换。是一条 CPU 的原子指令,其作用是让 CPU 先进行比较两个值是否相等,然后原子地更新某个位置的值,经过调查发现,其实现方式是基于硬件平台的汇编指令,就是说 CAS 是靠硬件实现的,JVM 只是封装了汇编调用,那些 AtomicInteger 类便是使用了这些封装后的接口。
简单解释:CAS操作需要输入两个数值,一个旧值(期望操作前的值)和一个新值,在操作期间先比较下在旧值有没有发生变化,如果没有发生变化,才交换成新值,发生了变化则不交换。
CAS 操作是原子性的,所以多线程并发使用 CAS 更新数据时,可以不使用锁。JDK 中大量使用了 CAS 来更新数据而防止加锁(synchronized 重量级锁)来保持原子更新。
应用示例
如果不使用CAS,在高并发下,多线程同时修改一个变量的值我们需要synchronized加锁(可能有人说可以用Lock加锁,Lock底层的AQS也是基于CAS进行获取锁的)。
public class Test {
private int i=0;
public synchronized int add(){
return i++;
}
}
java中为我们提供了AtomicInteger 原子类(底层基于CAS进行更新数据的),不需要加锁就在多线程并发场景下实现数据的一致性。
public class Test {
private AtomicInteger i = new AtomicInteger(0);
public int add(){
return i.addAndGet(1);
}
}
CAS 问题
CAS 方式为乐观锁,synchronized 为悲观锁。因此使用 CAS 解决并发问题通常情况下性能更优。
但使用 CAS 方式也会有几个问题:
ABA 问题
因为 CAS 需要在操作值的时候,检查值有没有发生变化,比如没有发生变化则更新,但是如果一个值原来是 A,变成了 B,又变成了 A,那么使用 CAS 进行检查时则会发现它的值没有发生变化,但是实际上却变化了。
ABA 问题的解决思路就是使用版本号。在变量前面追加上版本号,每次变量更新的时候把版本号加1,那么 A->B->A 就会变成 1A->2B->3A。
从 Java 1.5 开始,JDK 的 Atomic 包里提供了一个类 AtomicStampedReference 来解决 ABA 问题。这个类的 compareAndSet 方法的作用是首先检查当前引用是否等于预期引用,并且检查当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用和该标志的值设置为给定的更新值。
循环时间长开销大
自旋 CAS 如果长时间不成功,会给 CPU 带来非常大的执行开销。如果 JVM 能支持处理器提供的 pause 指令,那么效率会有一定的提升。
pause 指令有两个作用:
- 第一,它可以延迟流水线执行命令(de-pipeline),使 CPU 不会消耗过多的执行资源,延迟的时间取决于具体实现的版本,在一些处理器上延迟时间是零;
- 第二,它可以避免在退出循环的时候因内存顺序冲突(Memory Order Violation)而引起 CPU 流水线被清空(CPU Pipeline Flush),从而提高 CPU 的执行效率。
仅作用于单个变量
当对一个共享变量执行操作时,我们可以使用循环 CAS 的方式来保证原子操作,但是对多个共享变量操作时,循环 CAS 就无法保证操作的原子性,这个时候就可以用锁。
还有一个取巧的办法,就是把多个共享变量合并成一个共享变量来操作。比如,有两个共享变量 i = 2,j = a,合并一下 ij = 2a,然后用 CAS 来操作 ij。
从 Java 1.5 开始,JDK 提供了 AtomicReference 类来保证引用对象之间的原子性,就可以把多个变量放在一个对象里来进行 CAS 操作。
UnSafe 类
Java 原子类是通过 UnSafe 类实现的。
Unsafe 是位于 sun.misc 包下的一个类,主要提供一些用于执行低级别、不安全操作的方法,如直接访问系统内存资源、自主管理内存资源等,这些方法在提升 Java 运行效率、增强 Java 语言底层资源操作能力方面起到了很大的作用。
但由于 Unsafe 类使 Java 语言拥有了类似 C 语言指针一样操作内存空间的能力,这无疑也增加了程序发生相关指针问题的风险。在程序中过度、不正确使用 Unsafe 类会使得程序出错的概率变大,使得 Java 这种安全的语言变得不再“安全”,因此对 Unsafe 的使用一定要慎重。
这个类尽管里面的方法都是 public 的,但是并没有办法使用它们,JDK API 文档也没有提供任何关于这个类的方法的解释。总而言之,对于 Unsafe 类的使用都是受限制的,只有授信的代码才能获得该类的实例,当然 JDK 库里面的类是可以随意使用的。
功能概览:
UnSafe 与 CAS
内部使用自旋的方式进行CAS更新(while循环进行CAS更新,如果更新失败,则循环再次重试)。
public final int getAndAddInt(Object paramObject, long paramLong, int paramInt)
{
int i;
do
i = getIntVolatile(paramObject, paramLong);
while (!compareAndSwapInt(paramObject, paramLong, i, i + paramInt));
return i;
}
public final long getAndAddLong(Object paramObject, long paramLong1, long paramLong2)
{
long l;
do
l = getLongVolatile(paramObject, paramLong1);
while (!compareAndSwapLong(paramObject, paramLong1, l, l + paramLong2));
return l;
}
public final int getAndSetInt(Object paramObject, long paramLong, int paramInt)
{
int i;
do
i = getIntVolatile(paramObject, paramLong);
while (!compareAndSwapInt(paramObject, paramLong, i, paramInt));
return i;
}
public final long getAndSetLong(Object paramObject, long paramLong1, long paramLong2)
{
long l;
do
l = getLongVolatile(paramObject, paramLong1);
while (!compareAndSwapLong(paramObject, paramLong1, l, paramLong2));
return l;
}
public final Object getAndSetObject(Object paramObject1, long paramLong, Object paramObject2)
{
Object localObject;
do
localObject = getObjectVolatile(paramObject1, paramLong);
while (!compareAndSwapObject(paramObject1, paramLong, localObject, paramObject2));
return localObject;
}
从 UnSafe 类中发现,原子操作仅提供了三个方法:
public final native boolean compareAndSwapObject(Object paramObject1, long paramLong, Object paramObject2, Object paramObject3);
public final native boolean compareAndSwapInt(Object paramObject, long paramLong, int paramInt1, int paramInt2);
public final native boolean compareAndSwapLong(Object paramObject, long paramLong1, long paramLong2, long paramLong3);
UnSafe 底层
查看 Unsafe的compareAndSwap- 方法来实现 CAS 操作,它是一个本地方法,实现位于 unsafe.cpp 中。
UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x))
UnsafeWrapper("Unsafe_CompareAndSwapInt");
oop p = JNIHandles::resolve(obj);
jint* addr = (jint *) index_oop_from_field_offset_long(p, offset);
return (jint)(Atomic::cmpxchg(x, addr, e)) == e;
UNSAFE_END
可以看到它通过 Atomic::cmpxchg
来实现比较和替换操作。其中参数x是即将更新的值,参数e是原内存的值。
如果是Linux的x86,Atomic::cmpxchg
方法的实现如下:
inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) {
int mp = os::is_MP();
__asm__ volatile (LOCK_IF_MP(%4) "cmpxchgl %1,(%3)"
: "=a" (exchange_value)
: "r" (exchange_value), "a" (compare_value), "r" (dest), "r" (mp)
: "cc", "memory");
return exchange_value;
}
而 windows 的 x86 的实现如下:
inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) {
int mp = os::isMP(); //判断是否是多处理器
_asm {
mov edx, dest
mov ecx, exchange_value
mov eax, compare_value
LOCK_IF_MP(mp)
cmpxchg dword ptr [edx], ecx
}
}
// Adding a lock prefix to an instruction on MP machine
// VC++ doesn't like the lock prefix to be on a single line
// so we can't insert a label after the lock prefix.
// By emitting a lock prefix, we can define a label after it.
#define LOCK_IF_MP(mp) __asm cmp mp, 0 \
__asm je L0 \
__asm _emit 0xF0 \
__asm L0:
如果是多处理器,为 cmpxchg 指令添加 lock 前缀。反之,就省略 lock 前缀(单处理器会不需要 lock 前缀提供的内存屏障效果)。这里的 lock 前缀就是使用了处理器的总线锁(最新的处理器都使用缓存锁代替总线锁来提高性能)。
cmpxchg(void* ptr, int old, int new)
,如果 ptr 和 old 的值一样,则把 new 写到 ptr 内存,否则返回 ptr 的值,整个操作是原子的。在 Intel 平台下,会用 lock cmpxchg 来实现,使用 lock 触发缓存锁,这样另一个线程想访问 ptr 的内存,就会被 block 住。
UnSafe 其他功能
Unsafe 提供了硬件级别的操作,比如说获取某个属性在内存中的位置,比如说修改对象的字段值,即使它是私有的。不过 Java 本身就是为了屏蔽底层的差异,对于一般的开发而言也很少会有这样的需求。
举两个例子,比方说:
public native long staticFieldOffset(Field paramField);
这个方法可以用来获取给定的 paramField 的内存地址偏移量,这个值对于给定的 field 是唯一的且是固定不变的。
public native int arrayBaseOffset(Class paramClass);
public native int arrayIndexScale(Class paramClass);
前一个方法是用来获取数组第一个元素的偏移地址,后一个方法是用来获取数组的转换因子即数组中元素的增量地址的。
public native long allocateMemory(long paramLong);
public native long reallocateMemory(long paramLong1, long paramLong2);
public native void freeMemory(long paramLong);
分别用来分配内存,扩充内存和释放内存的。
AtomicInteger
public final int get():获取当前的值
public final int getAndSet(int newValue):获取当前的值,并设置新的值
public final int getAndIncrement():获取当前的值,并自增
public final int getAndDecrement():获取当前的值,并自减
public final int getAndAdd(int delta):获取当前的值,并加上预期的值
void lazySet(int newValue): 最终会设置成newValue,使用lazySet设置值后,可能导致其他线程在之后的一小段时间内还是可以读到旧的值。
源码解析
public class AtomicInteger extends Number implements java.io.Serializable {
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;
static {
try {
//用于获取value字段相对当前对象的“起始地址”的偏移量
valueOffset = unsafe.objectFieldOffset(AtomicInteger.class.getDeclaredField("value"));
} catch (Exception ex) { throw new Error(ex); }
}
private volatile int value;
//返回当前值
public final int get() {
return value;
}
//递增加detla
public final int getAndAdd(int delta) {
//三个参数,1、当前的实例 2、value实例变量的偏移量 3、当前value要加上的数(value+delta)。
return unsafe.getAndAddInt(this, valueOffset, delta);
}
//递增加1
public final int incrementAndGet() {
return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
}
...
}
AtomicInteger 底层用的是volatile的变量和CAS来进行更改数据的:
- volatile 保证线程的可见性,多线程并发时,一个线程修改数据,可以保证其它线程立马看到修改后的值
- CAS 保证数据更新的原子性
所有原子类
原子基本类型
使用原子的方式更新基本类型,Atomic 包共有 3 个类:
- AtomicBoolean
- AtomicInteger
- AtomicLong
原子数组
通过原子的方式更新数组里的某个元素,Atomic 包提供了以下的 4 个类:
- AtomicIntegerArray
- AtomicLongArray
- AtomicReferenceArray
常用方法:
get(int index)
compareAndSet(int i, E expect, E update)
原子引用
- AtomicReference: 原子更新引用类型。
- AtomicStampedReference: 原子更新引用类型, 内部使用Pair来存储元素值及其版本号。
- AtomicMarkableReferce: 原子更新带有标记位的引用类型。
都是基于 UnSafe 实现,但 AtomicReferenceFieldUpdater 所更新的字段必须使用 volatile 修饰。
原子字段更新
AtomicIntegerFieldUpdater: 原子更新整型的字段的更新器。
AtomicLongFieldUpdater: 原子更新长整型字段的更新器。
AtomicStampedFieldUpdater: 原子更新带有版本号的引用类型。
AtomicReferenceFieldUpdater: 上面已经说过此处不在赘述。
以上均为基于反射的原子更新字段的值,要想原子地更新字段类需要两步:
- 第一步,因为原子更新字段类都是抽象类,每次使用的时候必须使用静态方法newUpdater()创建一个更新器,并且需要设置想要更新的类和属性。
- 第二步,更新类的字段必须使用public volatile修饰。
public class TestAtomicIntegerFieldUpdater {
public static void main(String[] args){
TestAtomicIntegerFieldUpdater tIA = new TestAtomicIntegerFieldUpdater();
tIA.doIt();
}
public AtomicIntegerFieldUpdater<DataDemo> updater(String name){
return AtomicIntegerFieldUpdater.newUpdater(DataDemo.class,name);
}
public void doIt(){
DataDemo data = new DataDemo();
System.out.println("publicVar = "+updater("publicVar").getAndAdd(data, 2));
}
}
class DataDemo{
public volatile int publicVar=3;
protected volatile int protectedVar=4;
private volatile int privateVar=5;
public volatile static int staticVar = 10;
//public final int finalVar = 11;
public volatile Integer integerVar = 19;
public volatile Long longVar = 18L;
}
AtomicIntegerFieldUpdater 应用约束:
- 字段必须是 volatile 类型的,在线程之间共享变量时保证立即可见。
- 字段的描述类型(修饰符public/protected/default/private)是与调用者与操作对象字段的关系一致。
- 也就是说调用者能够直接操作对象字段,那么就可以反射进行原子操作。但是对于父类的字段,子类是不能直接操作的,尽管子类可以访问父类的字段。
- 只能是实例变量,不能是类变量,也就是说不能加 static 关键字。
- 只能是可修改变量,不能使 final 变量,因为 final 的语义就是不可修改。
- 实际上 final 的语义和 volatile 是有冲突的,这两个关键字不能同时存在。
- 对于 AtomicIntegerFieldUpdater 和 AtomicLongFieldUpdater 只能修改 int/long 类型的字段,不能修改其包装类型(Integer/Long)。
- 如果要修改包装类型就需要使用 AtomicReferenceFieldUpdater。
AtomicStampedReference 与 ABA
AtomicStampedReference 主要维护包含一个对象引用以及一个可以自动更新的整数 “stamp” 的 pair 对象来解决 ABA 问题。
public class AtomicStampedReference<V> {
private static class Pair<T> {
final T reference; //维护对象引用
final int stamp; //用于标志版本
private Pair(T reference, int stamp) {
this.reference = reference;
this.stamp = stamp;
}
static <T> Pair<T> of(T reference, int stamp) {
return new Pair<T>(reference, stamp);
}
}
private volatile Pair<V> pair;
....
/**
* expectedReference :更新之前的原始值
* newReference : 将要更新的新值
* expectedStamp : 期待更新的标志版本
* newStamp : 将要更新的标志版本
*/
public boolean compareAndSet(V expectedReference,
V newReference,
int expectedStamp,
int newStamp) {
// 获取当前的(元素值,版本号)对
Pair<V> current = pair;
return
// 引用没变
expectedReference == current.reference &&
// 版本号没变
expectedStamp == current.stamp &&
// 新引用等于旧引用
((newReference == current.reference &&
// 新版本号等于旧版本号
newStamp == current.stamp) ||
// 构造新的Pair对象并CAS更新
casPair(current, Pair.of(newReference, newStamp)));
}
private boolean casPair(Pair<V> cmp, Pair<V> val) {
// 调用Unsafe的compareAndSwapObject()方法CAS更新pair的引用为新引用
return UNSAFE.compareAndSwapObject(this, pairOffset, cmp, val);
}
- 如果元素值和版本号都没有变化,并且和新的也相同,返回true;
- 如果元素值和版本号都没有变化,并且和新的不完全相同,就构造一个新的Pair对象并执行CAS更新pair。
可以看到,java中的实现跟我们上面讲的ABA的解决方法是一致的。
- 首先,使用版本号控制;
- 其次,不重复使用节点(Pair)的引用,每次都新建一个新的Pair来作为CAS比较的对象,而不是复用旧的;
- 最后,外部传入元素值及版本号,而不是节点(Pair)的引用。
AtomicMarkableReference
AtomicMarkableReference,它不是维护一个版本号,而是维护一个boolean类型的标记,标记值有修改。
Feedback
Was this page helpful?
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.