CH09-底层支撑

CAS

现在安全的实现方法:

  • 互斥同步:synchronized、ReentrantLock
  • 非阻塞同步:CAS、Atomic-
  • 无同步方案:栈封闭、TreadLocal、可重入代码

什么是 CAS

CAS 的全称为 Compare-And-Swap,直译就是对比交换。是一条 CPU 的原子指令,其作用是让 CPU 先进行比较两个值是否相等,然后原子地更新某个位置的值,经过调查发现,其实现方式是基于硬件平台的汇编指令,就是说 CAS 是靠硬件实现的,JVM 只是封装了汇编调用,那些 AtomicInteger 类便是使用了这些封装后的接口。

简单解释:CAS操作需要输入两个数值,一个旧值(期望操作前的值)和一个新值,在操作期间先比较下在旧值有没有发生变化,如果没有发生变化,才交换成新值,发生了变化则不交换。

CAS 操作是原子性的,所以多线程并发使用 CAS 更新数据时,可以不使用锁。JDK 中大量使用了 CAS 来更新数据而防止加锁(synchronized 重量级锁)来保持原子更新。

应用示例

如果不使用CAS,在高并发下,多线程同时修改一个变量的值我们需要synchronized加锁(可能有人说可以用Lock加锁,Lock底层的AQS也是基于CAS进行获取锁的)。

public class Test {
    private int i=0;
    public synchronized int add(){
        return i++;
    }
}

java中为我们提供了AtomicInteger 原子类(底层基于CAS进行更新数据的),不需要加锁就在多线程并发场景下实现数据的一致性。

public class Test {
    private  AtomicInteger i = new AtomicInteger(0);
    public int add(){
        return i.addAndGet(1);
    }
}

CAS 问题

CAS 方式为乐观锁,synchronized 为悲观锁。因此使用 CAS 解决并发问题通常情况下性能更优。

但使用 CAS 方式也会有几个问题:

ABA 问题

因为 CAS 需要在操作值的时候,检查值有没有发生变化,比如没有发生变化则更新,但是如果一个值原来是 A,变成了 B,又变成了 A,那么使用 CAS 进行检查时则会发现它的值没有发生变化,但是实际上却变化了。

ABA 问题的解决思路就是使用版本号。在变量前面追加上版本号,每次变量更新的时候把版本号加1,那么 A->B->A 就会变成 1A->2B->3A。

从 Java 1.5 开始,JDK 的 Atomic 包里提供了一个类 AtomicStampedReference 来解决 ABA 问题。这个类的 compareAndSet 方法的作用是首先检查当前引用是否等于预期引用,并且检查当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用和该标志的值设置为给定的更新值。

循环时间长开销大

自旋 CAS 如果长时间不成功,会给 CPU 带来非常大的执行开销。如果 JVM 能支持处理器提供的 pause 指令,那么效率会有一定的提升。

pause 指令有两个作用:

  • 第一,它可以延迟流水线执行命令(de-pipeline),使 CPU 不会消耗过多的执行资源,延迟的时间取决于具体实现的版本,在一些处理器上延迟时间是零;
  • 第二,它可以避免在退出循环的时候因内存顺序冲突(Memory Order Violation)而引起 CPU 流水线被清空(CPU Pipeline Flush),从而提高 CPU 的执行效率。

仅作用于单个变量

当对一个共享变量执行操作时,我们可以使用循环 CAS 的方式来保证原子操作,但是对多个共享变量操作时,循环 CAS 就无法保证操作的原子性,这个时候就可以用锁。

还有一个取巧的办法,就是把多个共享变量合并成一个共享变量来操作。比如,有两个共享变量 i = 2,j = a,合并一下 ij = 2a,然后用 CAS 来操作 ij。

从 Java 1.5 开始,JDK 提供了 AtomicReference 类来保证引用对象之间的原子性,就可以把多个变量放在一个对象里来进行 CAS 操作。

UnSafe 类

Java 原子类是通过 UnSafe 类实现的。

Unsafe 是位于 sun.misc 包下的一个类,主要提供一些用于执行低级别、不安全操作的方法,如直接访问系统内存资源、自主管理内存资源等,这些方法在提升 Java 运行效率、增强 Java 语言底层资源操作能力方面起到了很大的作用。

但由于 Unsafe 类使 Java 语言拥有了类似 C 语言指针一样操作内存空间的能力,这无疑也增加了程序发生相关指针问题的风险。在程序中过度、不正确使用 Unsafe 类会使得程序出错的概率变大,使得 Java 这种安全的语言变得不再“安全”,因此对 Unsafe 的使用一定要慎重。

这个类尽管里面的方法都是 public 的,但是并没有办法使用它们,JDK API 文档也没有提供任何关于这个类的方法的解释。总而言之,对于 Unsafe 类的使用都是受限制的,只有授信的代码才能获得该类的实例,当然 JDK 库里面的类是可以随意使用的。

功能概览:

NAME

UnSafe 与 CAS

内部使用自旋的方式进行CAS更新(while循环进行CAS更新,如果更新失败,则循环再次重试)。

public final int getAndAddInt(Object paramObject, long paramLong, int paramInt)
{
  int i;
  do
    i = getIntVolatile(paramObject, paramLong);
  while (!compareAndSwapInt(paramObject, paramLong, i, i + paramInt));
  return i;
}

public final long getAndAddLong(Object paramObject, long paramLong1, long paramLong2)
{
  long l;
  do
    l = getLongVolatile(paramObject, paramLong1);
  while (!compareAndSwapLong(paramObject, paramLong1, l, l + paramLong2));
  return l;
}

public final int getAndSetInt(Object paramObject, long paramLong, int paramInt)
{
  int i;
  do
    i = getIntVolatile(paramObject, paramLong);
  while (!compareAndSwapInt(paramObject, paramLong, i, paramInt));
  return i;
}

public final long getAndSetLong(Object paramObject, long paramLong1, long paramLong2)
{
  long l;
  do
    l = getLongVolatile(paramObject, paramLong1);
  while (!compareAndSwapLong(paramObject, paramLong1, l, paramLong2));
  return l;
}

public final Object getAndSetObject(Object paramObject1, long paramLong, Object paramObject2)
{
  Object localObject;
  do
    localObject = getObjectVolatile(paramObject1, paramLong);
  while (!compareAndSwapObject(paramObject1, paramLong, localObject, paramObject2));
  return localObject;
}

从 UnSafe 类中发现,原子操作仅提供了三个方法:

public final native boolean compareAndSwapObject(Object paramObject1, long paramLong, Object paramObject2, Object paramObject3);

public final native boolean compareAndSwapInt(Object paramObject, long paramLong, int paramInt1, int paramInt2);

public final native boolean compareAndSwapLong(Object paramObject, long paramLong1, long paramLong2, long paramLong3);

UnSafe 底层

查看 Unsafe的compareAndSwap- 方法来实现 CAS 操作,它是一个本地方法,实现位于 unsafe.cpp 中。

UNSAFE_ENTRY(jboolean, Unsafe_CompareAndSwapInt(JNIEnv *env, jobject unsafe, jobject obj, jlong offset, jint e, jint x))
  UnsafeWrapper("Unsafe_CompareAndSwapInt");
  oop p = JNIHandles::resolve(obj);
  jint* addr = (jint *) index_oop_from_field_offset_long(p, offset);
  return (jint)(Atomic::cmpxchg(x, addr, e)) == e;
UNSAFE_END

可以看到它通过 Atomic::cmpxchg 来实现比较和替换操作。其中参数x是即将更新的值,参数e是原内存的值。

如果是Linux的x86,Atomic::cmpxchg方法的实现如下:

inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) {
  int mp = os::is_MP();
  __asm__ volatile (LOCK_IF_MP(%4) "cmpxchgl %1,(%3)"
                    : "=a" (exchange_value)
                    : "r" (exchange_value), "a" (compare_value), "r" (dest), "r" (mp)
                    : "cc", "memory");
  return exchange_value;
}

而 windows 的 x86 的实现如下:

inline jint Atomic::cmpxchg (jint exchange_value, volatile jint* dest, jint compare_value) {
    int mp = os::isMP(); //判断是否是多处理器
    _asm {
        mov edx, dest
        mov ecx, exchange_value
        mov eax, compare_value
        LOCK_IF_MP(mp)
        cmpxchg dword ptr [edx], ecx
    }
}

// Adding a lock prefix to an instruction on MP machine
// VC++ doesn't like the lock prefix to be on a single line
// so we can't insert a label after the lock prefix.
// By emitting a lock prefix, we can define a label after it.
#define LOCK_IF_MP(mp) __asm cmp mp, 0  \
                       __asm je L0      \
                       __asm _emit 0xF0 \
                       __asm L0:

如果是多处理器,为 cmpxchg 指令添加 lock 前缀。反之,就省略 lock 前缀(单处理器会不需要 lock 前缀提供的内存屏障效果)。这里的 lock 前缀就是使用了处理器的总线锁(最新的处理器都使用缓存锁代替总线锁来提高性能)。

cmpxchg(void* ptr, int old, int new),如果 ptr 和 old 的值一样,则把 new 写到 ptr 内存,否则返回 ptr 的值,整个操作是原子的。在 Intel 平台下,会用 lock cmpxchg 来实现,使用 lock 触发缓存锁,这样另一个线程想访问 ptr 的内存,就会被 block 住。

UnSafe 其他功能

Unsafe 提供了硬件级别的操作,比如说获取某个属性在内存中的位置,比如说修改对象的字段值,即使它是私有的。不过 Java 本身就是为了屏蔽底层的差异,对于一般的开发而言也很少会有这样的需求。

举两个例子,比方说:

public native long staticFieldOffset(Field paramField);

这个方法可以用来获取给定的 paramField 的内存地址偏移量,这个值对于给定的 field 是唯一的且是固定不变的。

public native int arrayBaseOffset(Class paramClass);
public native int arrayIndexScale(Class paramClass);

前一个方法是用来获取数组第一个元素的偏移地址,后一个方法是用来获取数组的转换因子即数组中元素的增量地址的。

public native long allocateMemory(long paramLong);
public native long reallocateMemory(long paramLong1, long paramLong2);
public native void freeMemory(long paramLong);

分别用来分配内存,扩充内存和释放内存的。

AtomicInteger

public final int get()获取当前的值
public final int getAndSet(int newValue)获取当前的值并设置新的值
public final int getAndIncrement()获取当前的值并自增
public final int getAndDecrement()获取当前的值并自减
public final int getAndAdd(int delta)获取当前的值并加上预期的值
void lazySet(int newValue): 最终会设置成newValue,使用lazySet设置值后可能导致其他线程在之后的一小段时间内还是可以读到旧的值

源码解析

public class AtomicInteger extends Number implements java.io.Serializable {
    private static final Unsafe unsafe = Unsafe.getUnsafe();
    private static final long valueOffset;
    static {
        try {
            //用于获取value字段相对当前对象的“起始地址”的偏移量
            valueOffset = unsafe.objectFieldOffset(AtomicInteger.class.getDeclaredField("value"));
        } catch (Exception ex) { throw new Error(ex); }
    }

    private volatile int value;

    //返回当前值
    public final int get() {
        return value;
    }

    //递增加detla
    public final int getAndAdd(int delta) {
        //三个参数,1、当前的实例 2、value实例变量的偏移量 3、当前value要加上的数(value+delta)。
        return unsafe.getAndAddInt(this, valueOffset, delta);
    }

    //递增加1
    public final int incrementAndGet() {
        return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
    }
...
}

AtomicInteger 底层用的是volatile的变量和CAS来进行更改数据的:

  • volatile 保证线程的可见性,多线程并发时,一个线程修改数据,可以保证其它线程立马看到修改后的值
  • CAS 保证数据更新的原子性

所有原子类

原子基本类型

使用原子的方式更新基本类型,Atomic 包共有 3 个类:

  • AtomicBoolean
  • AtomicInteger
  • AtomicLong

原子数组

通过原子的方式更新数组里的某个元素,Atomic 包提供了以下的 4 个类:

  • AtomicIntegerArray
  • AtomicLongArray
  • AtomicReferenceArray

常用方法:

  • get(int index)
  • compareAndSet(int i, E expect, E update)

原子引用

  • AtomicReference: 原子更新引用类型。
  • AtomicStampedReference: 原子更新引用类型, 内部使用Pair来存储元素值及其版本号。
  • AtomicMarkableReferce: 原子更新带有标记位的引用类型。

都是基于 UnSafe 实现,但 AtomicReferenceFieldUpdater 所更新的字段必须使用 volatile 修饰。

原子字段更新

  • AtomicIntegerFieldUpdater: 原子更新整型的字段的更新器。

  • AtomicLongFieldUpdater: 原子更新长整型字段的更新器。

  • AtomicStampedFieldUpdater: 原子更新带有版本号的引用类型。

  • AtomicReferenceFieldUpdater: 上面已经说过此处不在赘述。

以上均为基于反射的原子更新字段的值,要想原子地更新字段类需要两步:

  • 第一步,因为原子更新字段类都是抽象类,每次使用的时候必须使用静态方法newUpdater()创建一个更新器,并且需要设置想要更新的类和属性。
  • 第二步,更新类的字段必须使用public volatile修饰。
public class TestAtomicIntegerFieldUpdater {

    public static void main(String[] args){
        TestAtomicIntegerFieldUpdater tIA = new TestAtomicIntegerFieldUpdater();
        tIA.doIt();
    }

    public AtomicIntegerFieldUpdater<DataDemo> updater(String name){
        return AtomicIntegerFieldUpdater.newUpdater(DataDemo.class,name);

    }

    public void doIt(){
        DataDemo data = new DataDemo();
        System.out.println("publicVar = "+updater("publicVar").getAndAdd(data, 2));
    }

}

class DataDemo{
    public volatile int publicVar=3;
    protected volatile int protectedVar=4;
    private volatile  int privateVar=5;

    public volatile static int staticVar = 10;
    //public  final int finalVar = 11;

    public volatile Integer integerVar = 19;
    public volatile Long longVar = 18L;
}

AtomicIntegerFieldUpdater 应用约束:

  • 字段必须是 volatile 类型的,在线程之间共享变量时保证立即可见。
  • 字段的描述类型(修饰符public/protected/default/private)是与调用者与操作对象字段的关系一致。
    • 也就是说调用者能够直接操作对象字段,那么就可以反射进行原子操作。但是对于父类的字段,子类是不能直接操作的,尽管子类可以访问父类的字段。
  • 只能是实例变量,不能是类变量,也就是说不能加 static 关键字。
  • 只能是可修改变量,不能使 final 变量,因为 final 的语义就是不可修改。
    • 实际上 final 的语义和 volatile 是有冲突的,这两个关键字不能同时存在。
  • 对于 AtomicIntegerFieldUpdater 和 AtomicLongFieldUpdater 只能修改 int/long 类型的字段,不能修改其包装类型(Integer/Long)。
    • 如果要修改包装类型就需要使用 AtomicReferenceFieldUpdater。

AtomicStampedReference 与 ABA

AtomicStampedReference 主要维护包含一个对象引用以及一个可以自动更新的整数 “stamp” 的 pair 对象来解决 ABA 问题。

public class AtomicStampedReference<V> {
    private static class Pair<T> {
        final T reference;  //维护对象引用
        final int stamp;  //用于标志版本
        private Pair(T reference, int stamp) {
            this.reference = reference;
            this.stamp = stamp;
        }
        static <T> Pair<T> of(T reference, int stamp) {
            return new Pair<T>(reference, stamp);
        }
    }
    private volatile Pair<V> pair;
    ....
    
    /**
      * expectedReference :更新之前的原始值
      * newReference : 将要更新的新值
      * expectedStamp : 期待更新的标志版本
      * newStamp : 将要更新的标志版本
      */
    public boolean compareAndSet(V expectedReference,
                             V   newReference,
                             int expectedStamp,
                             int newStamp) {
        // 获取当前的(元素值,版本号)对
        Pair<V> current = pair;
        return
            // 引用没变
            expectedReference == current.reference &&
            // 版本号没变
            expectedStamp == current.stamp &&
            // 新引用等于旧引用
            ((newReference == current.reference &&
            // 新版本号等于旧版本号
            newStamp == current.stamp) ||
            // 构造新的Pair对象并CAS更新
            casPair(current, Pair.of(newReference, newStamp)));
    }

    private boolean casPair(Pair<V> cmp, Pair<V> val) {
        // 调用Unsafe的compareAndSwapObject()方法CAS更新pair的引用为新引用
        return UNSAFE.compareAndSwapObject(this, pairOffset, cmp, val);
    }
  • 如果元素值和版本号都没有变化,并且和新的也相同,返回true;
  • 如果元素值和版本号都没有变化,并且和新的不完全相同,就构造一个新的Pair对象并执行CAS更新pair。

可以看到,java中的实现跟我们上面讲的ABA的解决方法是一致的。

  • 首先,使用版本号控制;
  • 其次,不重复使用节点(Pair)的引用,每次都新建一个新的Pair来作为CAS比较的对象,而不是复用旧的;
  • 最后,外部传入元素值及版本号,而不是节点(Pair)的引用。

AtomicMarkableReference

AtomicMarkableReference,它不是维护一个版本号,而是维护一个boolean类型的标记,标记值有修改。