CH03-Stream

概览

Redis5.0 中还增加了一个数据结构Stream,从字面上看是流类型,但其实从功能上看,应该是Redis对消息队列(MQ,Message Queue)的完善实现。

用过Redis做消息队列的都了解,基于Reids的消息队列实现有很多种,例如:

  • PUB/SUB,订阅/发布模式:
    • 但是发布订阅模式是无法持久化的,如果出现网络断开、Redis 宕机等,消息就会被丢弃;
  • 基于 List LPUSH+BRPOP 或者基于Sorted-Set 的实现:
    • 支持了持久化,但是不支持多播,分组消费等

为什么上面的结构无法满足广泛的MQ场景? 这里便引出一个核心的问题:如果我们期望设计一种数据结构来实现消息队列,最重要的就是要理解设计一个消息队列需要考虑什么?初步的我们很容易想到

  • 消息的生产
  • 消息的消费
    • 单播和多播(多对多)
    • 阻塞和非阻塞读取
  • 消息有序性
  • 消息的持久化
NAME

基本结构

每个 Stream 都有唯一的名称,它就是 Redis 的 key,在我们首次使用 xadd 指令追加消息时自动创建。

NAME

上图解析:

  • Consumer Group :消费组,使用 XGROUP CREATE 命令创建,一个消费组有多个消费者(Consumer), 这些消费者之间是竞争关系。
  • last_delivered_id :游标,每个消费组会有个游标 last_delivered_id,任意一个消费者读取了消息都会使游标 last_delivered_id 往前移动。
  • pending_ids :消费者(Consumer)的状态变量,作用是维护消费者的未确认的 id。 pending_ids 记录了当前已经被客户端读取的消息,但是还没有 ack (Acknowledge character:确认字符)。如果客户端没有ack,这个变量里面的消息ID会越来越多,一旦某个消息被ack,它就开始减少。这个pending_ids变量在Redis官方被称之为PEL,也就是Pending Entries List,这是一个很核心的数据结构,它用来确保客户端至少消费了消息一次,而不会在网络传输的中途丢失了没处理。

此外我们还需要理解两点:

  • 消息ID: 消息ID的形式是timestampInMillis-sequence,例如1527846880572-5,它表示当前的消息在毫米时间戳1527846880572时产生,并且是该毫秒内产生的第5条消息。消息ID可以由服务器自动生成,也可以由客户端自己指定,但是形式必须是整数-整数,而且必须是后面加入的消息的ID要大于前面的消息ID。
  • 消息内容: 消息内容就是键值对,形如hash结构的键值对,这没什么特别之处。

基本操作

消息队列相关命令:

  • XADD - 添加消息到末尾
  • XTRIM - 对流进行修剪,限制长度
  • XDEL - 删除消息
  • XLEN - 获取流包含的元素数量,即消息长度
  • XRANGE - 获取消息列表,会自动过滤已经删除的消息
  • XREVRANGE - 反向获取消息列表,ID 从大到小
  • XREAD - 以阻塞或非阻塞方式获取消息列表
# *号表示服务器自动生成ID,后面顺序跟着一堆key/value
127.0.0.1:6379> xadd codehole * name laoqian age 30  #  名字叫laoqian,年龄30岁
1527849609889-0  # 生成的消息ID
127.0.0.1:6379> xadd codehole * name xiaoyu age 29
1527849629172-0
127.0.0.1:6379> xadd codehole * name xiaoqian age 1
1527849637634-0
127.0.0.1:6379> xlen codehole
(integer) 3
127.0.0.1:6379> xrange codehole - +  # -表示最小值, +表示最大值
127.0.0.1:6379> xrange codehole - +
1) 1) 1527849609889-0
   1) 1) "name"
      1) "laoqian"
      2) "age"
      3) "30"
2) 1) 1527849629172-0
   1) 1) "name"
      1) "xiaoyu"
      2) "age"
      3) "29"
3) 1) 1527849637634-0
   1) 1) "name"
      1) "xiaoqian"
      2) "age"
      3) "1"
127.0.0.1:6379> xrange codehole 1527849629172-0 +  # 指定最小消息ID的列表
1) 1) 1527849629172-0
   2) 1) "name"
      2) "xiaoyu"
      3) "age"
      4) "29"
2) 1) 1527849637634-0
   2) 1) "name"
      2) "xiaoqian"
      3) "age"
      4) "1"
127.0.0.1:6379> xrange codehole - 1527849629172-0  # 指定最大消息ID的列表
1) 1) 1527849609889-0
   2) 1) "name"
      2) "laoqian"
      3) "age"
      4) "30"
2) 1) 1527849629172-0
   2) 1) "name"
      2) "xiaoyu"
      3) "age"
      4) "29"
127.0.0.1:6379> xdel codehole 1527849609889-0
(integer) 1
127.0.0.1:6379> xlen codehole  # 长度不受影响
(integer) 3
127.0.0.1:6379> xrange codehole - +  # 被删除的消息没了
1) 1) 1527849629172-0
   2) 1) "name"
      2) "xiaoyu"
      3) "age"
      4) "29"
2) 1) 1527849637634-0
   2) 1) "name"
      2) "xiaoqian"
      3) "age"
      4) "1"
127.0.0.1:6379> del codehole  # 删除整个Stream
(integer) 1

独立消费

我们可以在不定义消费组的情况下进行Stream消息的独立消费,当Stream没有新消息时,甚至可以阻塞等待。Redis设计了一个单独的消费指令xread,可以将Stream当成普通的消息队列(list)来使用。使用xread时,我们可以完全忽略消费组(Consumer Group)的存在,就好比Stream就是一个普通的列表(list)。

# 从Stream头部读取两条消息
127.0.0.1:6379> xread count 2 streams codehole 0-0
1) 1) "codehole"
   2) 1) 1) 1527851486781-0
         2) 1) "name"
            2) "laoqian"
            3) "age"
            4) "30"
      2) 1) 1527851493405-0
         2) 1) "name"
            2) "yurui"
            3) "age"
            4) "29"
# 从Stream尾部读取一条消息,毫无疑问,这里不会返回任何消息
127.0.0.1:6379> xread count 1 streams codehole $
(nil)
# 从尾部阻塞等待新消息到来,下面的指令会堵住,直到新消息到来
127.0.0.1:6379> xread block 0 count 1 streams codehole $
# 我们从新打开一个窗口,在这个窗口往Stream里塞消息
127.0.0.1:6379> xadd codehole * name youming age 60
1527852774092-0
# 再切换到前面的窗口,我们可以看到阻塞解除了,返回了新的消息内容
# 而且还显示了一个等待时间,这里我们等待了93s
127.0.0.1:6379> xread block 0 count 1 streams codehole $
1) 1) "codehole"
   2) 1) 1) 1527852774092-0
         2) 1) "name"
            2) "youming"
            3) "age"
            4) "60"
(93.11s)

客户端如果想要使用xread进行顺序消费,一定要记住当前消费到哪里了,也就是返回的消息ID。下次继续调用xread时,将上次返回的最后一个消息ID作为参数传递进去,就可以继续消费后续的消息。

block 0表示永远阻塞,直到消息到来,block 1000表示阻塞1s,如果1s内没有任何消息到来,就返回nil

127.0.0.1:6379> xread block 1000 count 1 streams codehole $
(nil)
(1.07s)

按组消费

NAME

相关命令

  • XGROUP CREATE - 创建消费者组
  • XREADGROUP GROUP - 读取消费者组中的消息
  • XACK - 将消息标记为"已处理"
  • XGROUP SETID - 为消费者组设置新的最后递送消息ID
  • XGROUP DELCONSUMER - 删除消费者
  • XGROUP DESTROY - 删除消费者组
  • XPENDING - 显示待处理消息的相关信息
  • XCLAIM - 转移消息的归属权
  • XINFO - 查看流和消费者组的相关信息;
  • XINFO GROUPS - 打印消费者组的信息;
  • XINFO STREAM - 打印流信息

Stream通过xgroup create指令创建消费组(Consumer Group),需要传递起始消息ID参数用来初始化last_delivered_id变量。

Stream提供了xreadgroup指令可以进行消费组的组内消费,需要提供消费组名称、消费者名称和起始消息ID。它同xread一样,也可以阻塞等待新消息。读到新消息后,对应的消息ID就会进入消费者的PEL(正在处理的消息)结构里,客户端处理完毕后使用xack指令通知服务器,本条消息已经处理完毕,该消息ID就会从PEL中移除。

信息监控

Stream提供了XINFO来实现对服务器信息的监控,可以查询:

  • 查看队列信息
  • 消费组信息
  • 消费者组成员信息

应用场景

可用作时通信等,大数据分析,异地数据备份等

NAME

客户端可以平滑扩展,提高处理能力

NAME

消息ID的设计是否考虑了时间回拨的问题

XADD生成的1553439850328-0,就是Redis生成的消息ID,由两部分组成:时间戳-序号。时间戳是毫秒级单位,是生成消息的Redis服务器时间,它是个64位整型(int64)。序号是在这个毫秒时间点内的消息序号,它也是个64位整型。

可以通过multi批处理,来验证序号的递增:

127.0.0.1:6379> MULTI
OK
127.0.0.1:6379> XADD memberMessage * msg one
QUEUED
127.0.0.1:6379> XADD memberMessage * msg two
QUEUED
127.0.0.1:6379> XADD memberMessage * msg three
QUEUED
127.0.0.1:6379> XADD memberMessage * msg four
QUEUED
127.0.0.1:6379> XADD memberMessage * msg five
QUEUED
127.0.0.1:6379> EXEC
1) "1553441006884-0"
2) "1553441006884-1"
3) "1553441006884-2"
4) "1553441006884-3"
5) "1553441006884-4"

由于一个redis命令的执行很快,所以可以看到在同一时间戳内,是通过序号递增来表示消息的。

为了保证消息是有序的,因此Redis生成的ID是单调递增有序的。由于ID中包含时间戳部分,为了避免服务器时间错误而带来的问题(例如服务器时间延后了),Redis的每个Stream类型数据都维护一个latest_generated_id属性,用于记录最后一个消息的ID。若发现当前时间戳退后(小于latest_generated_id所记录的),则采用时间戳不变而序号递增的方案来作为新消息ID(这也是序号为什么使用int64的原因,保证有足够多的的序号),从而保证ID的单调递增性质。

强烈建议使用Redis的方案生成消息ID,因为这种时间戳+序号的单调递增的ID方案,几乎可以满足你全部的需求。但同时,记住ID是支持自定义的,别忘了!

消费者崩溃带来的会不会消息丢失问题

为了解决组内消息读取但处理期间消费者崩溃带来的消息丢失问题,STREAM 设计了 Pending 列表,用于记录读取但并未处理完毕的消息。命令XPENDIING 用来获消费组或消费内消费者的未处理完毕的消息。演示如下:

127.0.0.1:6379> XPENDING mq mqGroup # mpGroup的Pending情况
1) (integer) 5 # 5个已读取但未处理的消息
2) "1553585533795-0" # 起始ID
3) "1553585533795-4" # 结束ID
4) 1) 1) "consumerA" # 消费者A有3个
      2) "3"
   2) 1) "consumerB" # 消费者B有1个
      2) "1"
   3) 1) "consumerC" # 消费者C有1个
      2) "1"

127.0.0.1:6379> XPENDING mq mqGroup - + 10 # 使用 start end count 选项可以获取详细信息
1) 1) "1553585533795-0" # 消息ID
   2) "consumerA" # 消费者
   3) (integer) 1654355 # 从读取到现在经历了1654355ms,IDLE
   4) (integer) 5 # 消息被读取了5次,delivery counter
2) 1) "1553585533795-1"
   2) "consumerA"
   3) (integer) 1654355
   4) (integer) 4
# 共5个,余下3个省略 ...

127.0.0.1:6379> XPENDING mq mqGroup - + 10 consumerA # 在加上消费者参数,获取具体某个消费者的Pending列表
1) 1) "1553585533795-0"
   2) "consumerA"
   3) (integer) 1641083
   4) (integer) 5
# 共3个,余下2个省略 ...

每个Pending的消息有4个属性:

  • 消息ID
  • 所属消费者
  • IDLE,已读取时长
  • delivery counter,消息被读取次数

上面的结果我们可以看到,我们之前读取的消息,都被记录在Pending列表中,说明全部读到的消息都没有处理,仅仅是读取了。那如何表示消费者处理完毕了消息呢?使用命令 XACK 完成告知消息处理完成,演示如下:

127.0.0.1:6379> XACK mq mqGroup 1553585533795-0 # 通知消息处理结束,用消息ID标识
(integer) 1

127.0.0.1:6379> XPENDING mq mqGroup # 再次查看Pending列表
1) (integer) 4 # 已读取但未处理的消息已经变为4个
2) "1553585533795-1"
3) "1553585533795-4"
4) 1) 1) "consumerA" # 消费者A,还有2个消息处理
      2) "2"
   2) 1) "consumerB"
      2) "1"
   3) 1) "consumerC"
      2) "1"
127.0.0.1:6379>

有了这样一个Pending机制,就意味着在某个消费者读取消息但未处理后,消息是不会丢失的。等待消费者再次上线后,可以读取该Pending列表,就可以继续处理该消息了,保证消息的有序和不丢失。

消费者彻底宕机后如何转移给其它消费者处理

还有一个问题,就是若某个消费者宕机之后,没有办法再上线了,那么就需要将该消费者Pending的消息,转移给其他的消费者处理,就是消息转移。

消息转移的操作时将某个消息转移到自己的Pending列表中。使用语法XCLAIM来实现,需要设置组、转移的目标消费者和消息ID,同时需要提供IDLE(已被读取时长),只有超过这个时长,才能被转移。演示如下:

# 当前属于消费者A的消息1553585533795-1,已经15907,787ms未处理了
127.0.0.1:6379> XPENDING mq mqGroup - + 10
1) 1) "1553585533795-1"
   2) "consumerA"
   3) (integer) 15907787
   4) (integer) 4

# 转移超过3600s的消息1553585533795-1到消费者B的Pending列表
127.0.0.1:6379> XCLAIM mq mqGroup consumerB 3600000 1553585533795-1
1) 1) "1553585533795-1"
   2) 1) "msg"
      2) "2"

# 消息1553585533795-1已经转移到消费者B的Pending中。
127.0.0.1:6379> XPENDING mq mqGroup - + 10
1) 1) "1553585533795-1"
   2) "consumerB"
   3) (integer) 84404 # 注意IDLE,被重置了
   4) (integer) 5 # 注意,读取次数也累加了1次

以上代码,完成了一次消息转移。转移除了要指定ID外,还需要指定IDLE,保证是长时间未处理的才被转移。被转移的消息的IDLE会被重置,用以保证不会被重复转移,以为可能会出现将过期的消息同时转移给多个消费者的并发操作,设置了IDLE,则可以避免后面的转移不会成功,因为IDLE不满足条件。例如下面的连续两条转移,第二条不会成功。

127.0.0.1:6379> XCLAIM mq mqGroup consumerB 3600000 1553585533795-1
127.0.0.1:6379> XCLAIM mq mqGroup consumerC 3600000 1553585533795-1

这就是消息转移。至此我们使用了一个Pending消息的ID,所属消费者和IDLE的属性,还有一个属性就是消息被读取次数,delivery counter,该属性的作用由于统计消息被读取的次数,包括被转移也算。这个属性主要用在判定是否为错误数据上。

坏消息问题,Dead Letter,死信问题

正如上面所说,如果某个消息,不能被消费者处理,也就是不能被XACK,这是要长时间处于Pending列表中,即使被反复的转移给各个消费者也是如此。此时该消息的delivery counter就会累加(上一节的例子可以看到),当累加到某个我们预设的临界值时,我们就认为是坏消息(也叫死信,DeadLetter,无法投递的消息),由于有了判定条件,我们将坏消息处理掉即可,删除即可。删除一个消息,使用XDEL语法,演示如下:

# 删除队列中的消息
127.0.0.1:6379> XDEL mq 1553585533795-1
(integer) 1
# 查看队列中再无此消息
127.0.0.1:6379> XRANGE mq - +
1) 1) "1553585533795-0"
   2) 1) "msg"
      2) "1"
2) 1) "1553585533795-2"
   2) 1) "msg"
      2) "3"

注意本例中,并没有删除Pending中的消息因此你查看Pending,消息还会在。可以执行XACK标识其处理完毕!