基本原理

HTTP 不安全

HTTP 之所以被 HTTPS 取代,最大的原因就是不安全,至于为什么不安全,看了下面这张图就一目了然了。

20220219165644

由图可见,HTTP 在传输数据的过程中,所有的数据都是明文传输,自然没有安全性可言,特别是一些敏感数据,比如用户密码和信用卡信息等,一旦被第三方获取,后果不堪设想。这里可能有人会说,我在前端页面对敏感数据进行加密不就行了,比如 MD5 加盐加密。这么想就太简单了。

首先 MD5 并不是加密算法,其全称是 Message Digest Algorithm MD5,意为信息摘要算法,是一种不可逆的哈希算法,也就是说经过前端 MD5 处理过的数据在服务器端是无法复原的。这里以密码举例,前端把用户密码通过 MD5 进行处理,并把得到的哈希值发送给服务器,服务器由于无法复原密码,就会直接用这个哈希值处理用户请求。所以第三方在获取这个哈希值后,可以绕过前端登录页面直接访问服务器,造成安全问题。另外,MD5 算法本身的安全性也存在缺陷,这里就不展开谈了。

总之 MD5,SHA-1 之类的哈希算法并不能让 HTTP 变得更安全。要想让 HTTP 更安全,只能使用真正的加密算法,因为加密算法可以用密钥加密或还原数据,只要确保密钥不被第三方获取,那就能确保数据传输的安全了。而这正是 HTTPS 的解决方案,那下面就来了解一下加密算法吧。

加密算法

HTTPS 解决数据传输安全问题的方案就是使用加密算法,具体来说是混合加密算法,也就是对称加密和非对称加密的混合使用,这里有必要先了解一下这两种加密算法的区别和优缺点。

对称加密

对称加密,顾名思义就是加密和解密都是使用同一个密钥,常见的对称加密算法有 DES、3DES 和 AES 等,其优缺点如下:

  • 优点:算法公开、计算量小、加密速度快、加密效率高,适合加密比较大的数据。
  • 缺点:
    1. 交易双方需要使用相同的密钥,也就无法避免密钥的传输,而密钥在传输过程中无法保证不被截获,因此对称加密的安全性得不到保证。
    2. 每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一密钥,这会使得发收信双方所拥有的钥匙数量急剧增长,密钥管理成为双方的负担。对称加密算法在分布式网络系统上使用较为困难,主要是因为密钥管理困难,使用成本较高。

如果直接将对称加密算法用在 HTTP 中,会是下面的效果:

20220219165814

从图中可以看出,被加密的数据在传输过程中是无规则的乱码,即便被第三方截获,在没有密钥的情况下也无法解密数据,也就保证了数据的安全。但是有一个致命的问题,那就是既然双方要使用相同的密钥,那就必然要在传输数据之前先由一方把密钥传给另一方,那么在此过程中密钥就很有可能被截获,这样一来加密的数据也会被轻松解密。那如何确保密钥在传输过程中的安全呢?这就要用到非对称加密了。

非对称加密

非对称加密,顾名思义,就是加密和解密需要使用两个不同的密钥:公钥(public key)和私钥(private key)。公钥与私钥是一对,如果用公钥对数据进行加密,只有用对应的私钥才能解密;如果用私钥对数据进行加密,那么只有用对应的公钥才能解密。非对称加密算法实现机密信息交换的基本过程是:甲方生成一对密钥并将其中的一把作为公钥对外公开;得到该公钥的乙方使用公钥对机密信息进行加密后再发送给甲方;甲方再用自己保存的私钥对加密后的信息进行解密。如果对公钥和私钥不太理解,可以想象成一把钥匙和一个锁头,只是全世界只有你一个人有这把钥匙,你可以把锁头给别人,别人可以用这个锁把重要的东西锁起来,然后发给你,因为只有你一个人有这把钥匙,所以只有你才能看到被这把锁锁起来的东西。常用的非对称加密算法是 RSA 算法,其优缺点如下:

  • 优点:算法公开,加密和解密使用不同的钥匙,私钥不需要通过网络进行传输,安全性很高。
  • 缺点:计算量比较大,加密和解密速度相比对称加密慢很多。

由于非对称加密的强安全性,可以用它完美解决对称加密的密钥泄露问题,效果图如下:

20220219165853

在上述过程中,客户端在拿到服务器的公钥后,会生成一个随机码 (用 KEY 表示,这个 KEY 就是后续双方用于对称加密的密钥),然后客户端使用公钥把 KEY 加密后再发送给服务器,服务器使用私钥将其解密,这样双方就有了同一个密钥 KEY,然后双方再使用 KEY 进行对称加密交互数据。在非对称加密传输 KEY 的过程中,即便第三方获取了公钥和加密后的 KEY,在没有私钥的情况下也无法破解 KEY (私钥存在服务器,泄露风险极小),也就保证了接下来对称加密的数据安全。而上面这个流程图正是 HTTPS 的雏形,HTTPS 正好综合了这两种加密算法的优点,不仅保证了通信安全,还保证了数据传输效率。

HTTPS 应用过程

先看一下维基百科对 HTTPS 的定义

Hypertext Transfer Protocol Secure (HTTPS) is an extension of the Hypertext Transfer Protocol (HTTP). It is used for secure communication over a computer network, and is widely used on the Internet. In HTTPS, the communication protocol is encrypted using Transport Layer Security (TLS) or, formerly, its predecessor, Secure Sockets Layer (SSL). The protocol is therefore also often referred to as HTTP over TLS, or HTTP over SSL.

HTTPS (Hypertext Transfer Protocol Secure) 是基于 HTTP 的扩展,用于计算机网络的安全通信,已经在互联网得到广泛应用。在 HTTPS 中,原有的 HTTP 协议会得到 TLS (安全传输层协议) 或其前辈 SSL (安全套接层) 的加密。因此 HTTPS 也常指 HTTP over TLS 或 HTTP over SSL。

可见HTTPS 并非独立的通信协议,而是对 HTTP 的扩展,保证了通信安全,二者关系如下:

20220219165923

也就是说 HTTPS = HTTP + SSL / TLS。

20220219165946

看上去眼花缭乱,不要怕,且听我细细道来。HTTPS 的整个通信过程可以分为两大阶段:证书验证和数据传输阶段,数据传输阶段又可以分为非对称加密和对称加密两个阶段。具体流程按图中的序号讲解。

  1. 客户端请求 HTTPS 网址,然后连接到 server 的 443 端口 (HTTPS 默认端口,类似于 HTTP 的80端口)。
  2. 采用 HTTPS 协议的服务器必须要有一套数字 CA (Certification Authority)证书,证书是需要申请的,并由专门的数字证书认证机构(CA)通过非常严格的审核之后颁发的电子证书 (当然了是要钱的,安全级别越高价格越贵)。颁发证书的同时会产生一个私钥和公钥。私钥由服务端自己保存,不可泄漏。公钥则是附带在证书的信息中,可以公开的。证书本身也附带一个证书电子签名,这个签名用来验证证书的完整性和真实性,可以防止证书被篡改。
  3. 服务器响应客户端请求,将证书传递给客户端,证书包含公钥和大量其他信息,比如证书颁发机构信息,公司信息和证书有效期等。Chrome 浏览器点击地址栏的锁标志再点击证书就可以看到证书详细信息。
    • 20220219170008
  4. 客户端解析证书并对其进行验证。如果证书不是可信机构颁布,或者证书中的域名与实际域名不一致,或者证书已经过期,就会向访问者显示一个警告,由其选择是否还要继续通信。就像下面这样:
    • 20220219170032
    • 如果证书没有问题,客户端就会从服务器证书中取出服务器的公钥A。然后客户端还会生成一个随机码 KEY,并使用公钥A将其加密。
  5. 客户端把加密后的随机码 KEY 发送给服务器,作为后面对称加密的密钥。
  6. 服务器在收到随机码 KEY 之后会使用私钥B将其解密。经过以上这些步骤,客户端和服务器终于建立了安全连接,完美解决了对称加密的密钥泄露问题,接下来就可以用对称加密愉快地进行通信了。
  7. 服务器使用密钥 (随机码 KEY)对数据进行对称加密并发送给客户端,客户端使用相同的密钥 (随机码 KEY)解密数据。
  8. 双方使用对称加密愉快地传输所有数据。

数字签名与证书

黑客虽然拿不到会话密钥,无法破解密文,但可以通过窃听收集到足够多的密文,再尝试着修改、重组后发给网站。因为没有完整性保证,服务器只能“照单全收”,然后他就可以通过服务器的响应获取进一步的线索,最终就会破解出明文。

另外,黑客也可以伪造身份发布公钥。如果你拿到了假的公钥,混合加密就完全失效了。你以为自己是在和“某宝”通信,实际上网线的另一端却是黑客,银行卡号、密码等敏感信息就在“安全”的通信过程中被窃取了。

所以,在机密性的基础上还必须加上完整性、身份认证等特性,才能实现真正的安全。

摘要算法

实现完整性的手段主要是摘要算法(Digest Algorithm),也就是常说的散列函数、哈希函数(Hash Function)。

你可以把摘要算法近似地理解成一种特殊的压缩算法,它能够把任意长度的数据“压缩”成固定长度、而且独一无二的“摘要”字符串,就好像是给这段数据生成了一个数字“指纹”。

换一个角度,也可以把摘要算法理解成特殊的“单向”加密算法,它只有算法,没有密钥,加密后的数据无法解密,不能从摘要逆推出原文。

摘要算法实际上是把数据从一个“大空间”映射到了“小空间”,所以就存在“冲突”(collision,也叫碰撞)的可能性,就如同现实中的指纹一样,可能会有两份不同的原文对应相同的摘要。好的摘要算法必须能够“抵抗冲突”,让这种可能性尽量地小。

因为摘要算法对输入具有“单向性”和“雪崩效应”,输入的微小不同会导致输出的剧烈变化,所以也被 TLS 用来生成伪随机数(PRF,pseudo random function)。

你一定在日常工作中听过、或者用过 MD5(Message-Digest 5)、SHA-1(Secure Hash Algorithm 1),它们就是最常用的两个摘要算法,能够生成 16 字节和 20 字节长度的数字摘要。但这两个算法的安全强度比较低,不够安全,在 TLS 里已经被禁止使用了。

目前 TLS 推荐使用的是 SHA-1 的后继者:SHA-2。

SHA-2 实际上是一系列摘要算法的统称,总共有 6 种,常用的有 SHA224、SHA256、SHA384,分别能够生成 28 字节、32 字节、48 字节的摘要。

完整性

摘要算法保证了“数字摘要”和原文是完全等价的。所以,我们只要在原文后附上它的摘要,就能够保证数据的完整性。

比如,你发了条消息:“转账 1000 元”,然后再加上一个 SHA-2 的摘要。网站收到后也计算一下消息的摘要,把这两份“指纹”做个对比,如果一致,就说明消息是完整可信的,没有被修改。

如果黑客在中间哪怕改动了一个标点符号,摘要也会完全不同,网站计算比对就会发现消息被窜改,是不可信的。

不过摘要算法不具有机密性,如果明文传输,那么黑客可以修改消息后把摘要也一起改了,网站还是鉴别不出完整性。

所以,真正的完整性必须要建立在机密性之上,在混合加密系统里用会话密钥加密消息和摘要,这样黑客无法得知明文,也就没有办法动手脚了。

这有个术语,叫哈希消息认证码(HMAC)。

20220219171121

数字签名

加密算法结合摘要算法,我们的通信过程可以说是比较安全了。但这里还有漏洞,就是通信的两个端点(endpoint)。

就像一开始所说的,黑客可以伪装成网站来窃取信息。而反过来,他也可以伪装成你,向网站发送支付、转账等消息,网站没有办法确认你的身份,钱可能就这么被偷走了。

现实生活中,解决身份认证的手段是签名和印章,只要在纸上写下签名或者盖个章,就能够证明这份文件确实是由本人而不是其他人发出的。

在这里,使用非对称加密里的“私钥”再加上摘要算法,就能够实现“数字签名”,同时实现“身份认证”和“不可否认”。

数字签名的原理其实很简单,就是把公钥私钥的用法反过来,之前是公钥加密、私钥解密,现在是私钥加密、公钥解密。

但又因为非对称加密效率太低,所以私钥只加密原文的摘要,这样运算量就小的多,而且得到的数字签名也很小,方便保管和传输。

签名和公钥一样完全公开,任何人都可以获取。但这个签名只有用私钥对应的公钥才能解开,拿到摘要后,再比对原文验证完整性,就可以像签署文件一样证明消息确实是你发的。

20220219171200

数字证书和 CA

到现在,综合使用对称加密、非对称加密和摘要算法,是不是已经完美了呢?

不是的,这里还有一个“公钥的信任”问题。因为谁都可以发布公钥,我们还缺少防止黑客伪造公钥的手段,也就是说,怎么来判断这个公钥就是你或者某宝的公钥呢?

真是“按下葫芦又起了瓢”,安全还真是个麻烦事啊,“一环套一环”的。

我们可以用类似密钥交换的方法来解决公钥认证问题,用别的私钥来给公钥签名,显然,这又会陷入“无穷递归”。但这次实在是“没招”了,要终结这个“死循环”,就必须引入“外力”,找一个公认的可信第三方,让它作为“信任的起点,递归的终点”,构建起公钥的信任链。

这个“第三方”就是我们常说的 CA(Certificate Authority,证书认证机构)。它就像网络世界里的公安局、教育部、公证中心,具有极高的可信度,由它来给各个公钥签名,用自身的信誉来保证公钥无法伪造,是可信的。CA 对公钥的签名认证也是有格式的,不是简单地把公钥绑定在持有者身份上就完事了,还要包含序列号、用途、颁发者、有效时间等等,把这些打成一个包再签名,完整地证明公钥关联的各种信息,形成“数字证书”(Certificate)。

知名的 CA 全世界就那么几家,比如 DigiCert、VeriSign、Entrust、Let’s Encrypt 等,它们签发的证书分 DV、OV、EV 三种,区别在于可信程度。

DV 是最低的,只是域名级别的可信,背后是谁不知道。EV 是最高的,经过了法律和审计的严格核查,可以证明网站拥有者的身份(在浏览器地址栏会显示出公司的名字,例如 Apple、GitHub 的网站)。

不过,CA 怎么证明自己呢?

这还是信任链的问题。小一点的 CA 可以让大 CA 签名认证,但链条的最后,也就是Root CA,就只能自己证明自己了,这个就叫“自签名证书”(Self-Signed Certificate)或者“根证书”(Root Certificate)。你必须相信,否则整个证书信任链就走不下去了。

20220219171233

有了这个证书体系,操作系统和浏览器都内置了各大 CA 的根证书,上网的时候只要服务器发过来它的证书,就可以验证证书里的签名,顺着证书链(Certificate Chain)一层层地验证,直到找到根证书,就能够确定证书是可信的,从而里面的公钥也是可信的。

证书体系的弱点

证书体系(PKI,Public Key Infrastructure)虽然是目前整个网络世界的安全基础设施,但绝对的安全是不存在的,它也有弱点,还是关键的“信任”二字。

如果 CA 失误或者被欺骗,签发了错误的证书,虽然证书是真的,可它代表的网站却是假的。

还有一种更危险的情况,CA 被黑客攻陷,或者 CA 有恶意,因为它(即根证书)是信任的源头,整个信任链里的所有证书也就都不可信了。

这两种事情并不是“耸人听闻”,都曾经实际出现过。所以,需要再给证书体系打上一些补丁。

针对第一种,开发出了 CRL(证书吊销列表,Certificate revocation list)和 OCSP(在线证书状态协议,Online Certificate Status Protocol),及时废止有问题的证书。

对于第二种,因为涉及的证书太多,就只能操作系统或者浏览器从根上“下狠手”了,撤销对 CA 的信任,列入“黑名单”,这样它颁发的所有证书就都会被认为是不安全的。

HTTPS 建立连接

当你在浏览器地址栏里键入“https”开头的 URI,再按下回车,会发生什么呢?

浏览器首先要从 URI 里提取出协议名和域名。因为协议名是“https”,所以浏览器就知道了端口号是默认的 443,它再用 DNS 解析域名,得到目标的 IP 地址,然后就可以使用三次握手与网站建立 TCP 连接了。

在 HTTP 协议里,建立连接后,浏览器会立即发送请求报文。但现在是 HTTPS 协议,它需要再用另外一个“握手”过程,在 TCP 上建立安全连接,之后才是收发 HTTP 报文。

这个“握手”过程与 TCP 有些类似,是 HTTPS 和 TLS 协议里最重要、最核心的部分,懂了它,你就可以自豪地说自己“掌握了 HTTPS”。

TLS 协议的组成

在讲 TLS 握手之前,我先简单介绍一下 TLS 协议的组成。

TLS 包含几个子协议,你也可以理解为它是由几个不同职责的模块组成,比较常用的有记录协议、警报协议、握手协议、变更密码规范协议等。

  • 记录协议(Record Protocol)规定了 TLS 收发数据的基本单位:记录(record)。它有点像是 TCP 里的 segment,所有的其他子协议都需要通过记录协议发出。但多个记录数据可以在一个 TCP 包里一次性发出,也并不需要像 TCP 那样返回 ACK。
  • 警报协议(Alert Protocol)的职责是向对方发出警报信息,有点像是 HTTP 协议里的状态码。比如,protocol_version 就是不支持旧版本,bad_certificate 就是证书有问题,收到警报后另一方可以选择继续,也可以立即终止连接。
  • 握手协议(Handshake Protocol)是 TLS 里最复杂的子协议,要比 TCP 的 SYN/ACK 复杂的多,浏览器和服务器会在握手过程中协商 TLS 版本号、随机数、密码套件等信息,然后交换证书和密钥参数,最终双方协商得到会话密钥,用于后续的混合加密系统。
  • 最后一个是变更密码规范协议(Change Cipher Spec Protocol),它非常简单,就是一个“通知”,告诉对方,后续的数据都将使用加密保护。那么反过来,在它之前,数据都是明文的。

下面的这张图简要地描述了 TLS 的握手过程,其中每一个“框”都是一个记录,多个记录组合成一个 TCP 包发送。所以,最多经过两次消息往返(4 个消息)就可以完成握手,然后就可以在安全的通信环境里发送 HTTP 报文,实现 HTTPS 协议。

20220219171405

ECDHE 握手过程

刚才你看到的是握手过程的简要图,又画了一个详细图,下面我就用这个图来仔细剖析 TLS 的握手过程。

20220219171431

在 TCP 建立连接之后,浏览器会首先发一个“Client Hello”消息,也就是跟服务器“打招呼”。里面有客户端的版本号、支持的密码套件,还有一个随机数(Client Random),用于后续生成会话密钥。

复制代码

Handshake Protocol: Client Hello
Version: TLS 1.2 (0x0303)
Random: 1cbf803321fd2623408dfe…
Cipher Suites (17 suites)
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 (0xc02f)
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xc030)

复制代码

这个的意思就是:“我这边有这些这些信息,你看看哪些是能用的,关键的随机数可得留着。”复制代码

作为“礼尚往来”,服务器收到“Client Hello”后,会返回一个“Server Hello”消息。把版本号对一下,也给出一个随机数(Server Random),然后从客户端的列表里选一个作为本次通信使用的密码套件,在这里它选择了“TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384”。

Handshake Protocol: Server Hello
Version: TLS 1.2 (0x0303)
Random: 0e6320f21bae50842e96…
Cipher Suite: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (0xc030)

这个的意思就是:“版本号对上了,可以加密,你的密码套件挺多,我选一个最合适的吧,用椭圆曲线加 RSA、AES、SHA384。我也给你一个随机数,你也得留着。”复制代码

然后,服务器为了证明自己的身份,就把证书也发给了客户端(Server Certificate)。

接下来是一个关键的操作,因为服务器选择了 ECDHE 算法,所以它会在证书后发送“Server Key Exchange”消息,里面是椭圆曲线的公钥(Server Params),用来实现密钥交换算法,再加上自己的私钥签名认证。

复制代码

Handshake Protocol: Server Key Exchange
EC Diffie-Hellman Server Params
Curve Type: named_curve (0x03)
Named Curve: x25519 (0x001d)
Pubkey: 3b39deaf00217894e...
Signature Algorithm: rsa_pkcs1_sha512 (0x0601)
Signature: 37141adac38ea4...

复制代码

这相当于说:“刚才我选的密码套件有点复杂,所以再给你个算法的参数,和刚才的随机数一样有用,别丢了。为了防止别人冒充,我又盖了个章。”复制代码

之后是“Server Hello Done”消息,服务器说:“我的信息就是这些,打招呼完毕。”

这样第一个消息往返就结束了(两个 TCP 包),结果是客户端和服务器通过明文共享了三个信息:Client Random、Server Random 和 Server Params。

客户端这时也拿到了服务器的证书,那这个证书是不是真实有效的呢?

这就要用到第 25 讲里的知识了,开始走证书链逐级验证,确认证书的真实性,再用证书公钥验证签名,就确认了服务器的身份:“刚才跟我打招呼的不是骗子,可以接着往下走。”

然后,客户端按照密码套件的要求,也生成一个椭圆曲线的公钥(Client Params),用“Client Key Exchange”消息发给服务器。

Handshake Protocol: Client Key Exchange
  EC Diffie-Hellman Client Params
    Pubkey: 8c674d0e08dc27b5eaa…

现在客户端和服务器手里都拿到了密钥交换算法的两个参数(Client Params、Server Params),就用 ECDHE 算法一阵算,算出了一个新的东西,叫“Pre-Master”,其实也是一个随机数。

至于具体的计算原理和过程,因为太复杂就不细说了,但算法可以保证即使黑客截获了之前的参数,也是绝对算不出这个随机数的。

现在客户端和服务器手里有了三个随机数:Client Random、Server Random 和 Pre-Master。用这三个作为原始材料,就可以生成用于加密会 话的主密钥,叫“Master Secret”。而黑客因为拿不到“Pre-Master”,所以也就得不到主密钥。

为什么非得这么麻烦,非要三个随机数呢?

这就必须说 TLS 的设计者考虑得非常周到了,他们不信任客户端或服务器伪随机数的可靠性,为了保证真正的“完全随机”“不可预测”,把三个不可靠的随机数混合起来,那么“随机”的程度就非常高了,足够让黑客难以猜测。

你一定很想知道“Master Secret”究竟是怎么算出来的吧,贴一下 RFC 里的公式:

master_secret = PRF(pre_master_secret, "master secret",ClientHello.random + ServerHello.random)

这里的“PRF”就是伪随机数函数,它基于密码套件里的最后一个参数,比如这次的 SHA384,通过摘要算法来再一次强化“Master Secret”的随机性。复制代码

主密钥有 48 字节,但它也不是最终用于通信的会话密钥,还会再用 PRF 扩展出更多的密钥,比如客户端发送用的会话密钥(client_write_key)、服务器发送用的会话密钥(server_write_key)等等,避免只用一个密钥带来的安全隐患。

有了主密钥和派生的会话密钥,握手就快结束了。客户端发一个“Change Cipher Spec”,然后再发一个“Finished”消息,把之前所有发送的数据做个摘要,再加密一下,让服务器做个验证。

意思就是告诉服务器:“后面都改用对称算法加密通信了啊,用的就是打招呼时说的 AES,加密对不对还得你测一下。”

服务器也是同样的操作,发“Change Cipher Spec”和“Finished”消息,双方都验证加密解密 OK,握手正式结束,后面就收发被加密的 HTTP 请求和响应了。

RSA 握手过程

整个握手过程可真是够复杂的,但你可能会问了,好像这个过程和其他地方看到的不一样呢?

刚才说的其实是如今主流的 TLS 握手过程,这与传统的握手有两点不同。

第一个,使用 ECDHE 实现密钥交换,而不是 RSA,所以会在服务器端发出“Server Key Exchange”消息。

第二个,因为使用了 ECDHE,客户端可以不用等到服务器发回“Finished”确认握手完毕,立即就发出 HTTP 报文,省去了一个消息往返的时间浪费。这个叫“TLS False Start”,意思就是“抢跑”,和“TCP Fast Open”有点像,都是不等连接完全建立就提前发应用数据,提高传输的效率。

这里我也画了个图。

20220219171507

大体的流程没有变,只是“Pre-Master”不再需要用算法生成,而是客户端直接生成随机数,然后用服务器的公钥加密,通过“Client Key Exchange”消息发给服务器。服务器再用私钥解密,这样双方也实现了共享三个随机数,就可以生成主密钥。

双向认证

到这里 TLS 握手就基本讲完了。

不过上面说的是“单向认证”握手过程,只认证了服务器的身份,而没有认证客户端的身份。这是因为通常单向认证通过后已经建立了安全通信,用账号、密码等简单的手段就能够确认用户的真实身份。

但为了防止账号、密码被盗,有的时候(比如网上银行)还会使用 U 盾给用户颁发客户端证书,实现“双向认证”,这样会更加安全。

双向认证的流程也没有太多变化,只是在“Server Hello Done”之后,“Client Key Exchange”之前,客户端要发送“Client Certificate”消息,服务器收到后也把证书链走一遍,验证客户端的身份。